首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of work function and thermodynamic selectivity of hole collecting contacts on the origin of open circuit voltage (VOC) in bulk heterojunction organic photovoltaics is examined for poly(N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole) (PCDTBT) and [6,6]‐phenyl‐C71 butyric acid methyl ester (PC71BM) solar cells. In the absence of a charge selective, electron blocking contact, systematic variation of the work function of the contact directly dictates the VOC, as defined by the energetic separation between the relative Fermi levels for holes and electrons, with little change in the observed dark saturation current, J0. Improving the charge selectivity of the contact through an increased barrier to electron injection from the fullerene in the blend into the hole contact results in a decreased reverse saturation current (decreased J0 and increased shunt resistance, RSH) and improved VOC. Based on these observations, we provide a set of contact design criteria for tuning the VOC in bulk heterojunction organic photovoltaics.  相似文献   

2.
To realize efficient photoconversion in organic semiconductors, photogenerated excitons must be dissociated into their constituent electronic charges. In an organic photovoltaic (OPV) cell, this is most often accomplished using an electron donor–acceptor (D–A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo efficient bulk‐ionization and generate photocurrent as a result of the large built‐in field created by the MoOx/C60 interface. Here, it is demonstrated that bulk ionization processes also contribute to the short‐circuit current density (JSC) and open‐circuit voltage (VOC) in bulk heterojunction (BHJ) OPVs with fullerene‐rich compositions. Temperature‐dependent measurements of device performance are used to distinguish dissociation by bulk‐ionization from charge transfer at the D–A interface. In optimized fullerene‐rich BHJs based on the D–A pairing of boron subphthalocyanine chloride (SubPc)–C60, bulk‐ionization is found to be responsible for ≈16% of the total photocurrent, and >30% of the photocurrent originating from C60. The presence of bulk‐ionization in C60 also impacts the temperature dependence of VOC, with fullerene‐rich SubPc:C60 BHJ OPVs showing a larger VOC than evenly mixed BHJs. The prevalence of bulk‐ionization processes in efficient, fullerene‐rich BHJs underscores the need to include these effects when engineering device design and morphology in OPVs.  相似文献   

3.
Doping of organic bulk heterojunction solar cells has the potential to improve their power conversion efficiency (PCE). Deconvoluting the effect of doping on charge transport, recombination, and energetic disorder remains challenging. It is demonstrated that molecular doping has two competing effects: on one hand, dopant ions create additional traps while on the other hand free dopant‐induced charges fill deep states possibly leading to V OC and mobility increases. It is shown that molar dopant concentrations as low as a few parts per million can improve the PCE of organic bulk heterojunctions. Higher concentrations degrade the performance of the cells. In doped cells where PCE is observed to increase, such improvement cannot be attributed to better charge transport. Instead, the V OC increase in unannealed P3HT:PCBM cells upon doping is indeed due to trap filling, while for annealed P3HT:PCBM cells the change in V OC is related to morphology changes and dopant segregation. In PCDTBT:PC70BM cells, the enhanced PCE upon doping is explained by changes in the thickness of the active layer. This study highlights the complexity of bulk doping in organic solar cells due to the generally low doping efficiency and the constraint on doping concentrations to avoid carrier recombination and adverse morphology changes.  相似文献   

4.
Solution‐processable small molecule (SM) donors are promising alternatives to their polymer counterparts in bulk‐heterojunction (BHJ) solar cells. While SM donors with favorable spectral absorption, self‐assembly patterns, optimum thin‐film morphologies, and high carrier mobilities in optimized donor–acceptor blends are required to further BHJ device efficiencies, material structure governs each one of those attributes. As a result, the rational design of SM donors with gradually improved BHJ solar cell efficiencies must concurrently address: (i) bandgap tuning and optimization of spectral absorption (inherent to the SM main chain) and (ii) pendant‐group substitution promoting structural order and mediating morphological effects. In this paper, the rational pendant‐group substitution in benzo[1,2‐b:4,5‐b′]dithiophene–6,7‐difluoroquinoxaline SMs is shown to be an effective approach to narrowing the optical gap (Eopt) of the SM donors ( SM1 and SM2 ), without altering their propensity to order and form favorable thin‐film BHJ morphologies with PC71BM. Systematic device examinations show that power conversion efficiencies >8% and open‐circuit voltages (VOC) nearing 1 V can be achieved with the narrow‐gap SM donor analog ( SM2 , Eopt = 1.6 eV) and that charge transport in optimized BHJ solar cells proceeds with minimal, nearly trap‐free recombination. Detailed device simulations, light intensity dependence, and transient photocurrent analyses emphasize how carrier recombination impacts BHJ device performance upon optimization of active layer thickness and morphology.  相似文献   

5.
The field of organic photovoltaics has recently produced highly efficient single‐junction cells with power conversion efficiency >10%, yet the open‐circuit voltage (VOC) remains relatively low in many high performing systems. An accurate picture of the density of states (DOS) in working solar cells is crucial to understanding the sources of voltage loss, but remains difficult to obtain experimentally. Here, the tail of the DOS is characterized in a number of small molecule bulk heterojunction solar cells from the charge density dependence of VOC, and is directly compared to the disorder present within donor and acceptor components as measured by Kelvin probe. Using these DOS distributions, the total energy loss relative to the charge transfer state energy (ECT)—ranging from ≈0.5 to 0.7 eV—is divided into contributions from energetic disorder and from charge recombination, and the extent to which these factors limit the VOC is assessed.  相似文献   

6.
Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next‐generation photovoltaics with performance beyond the single‐junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm?2. In combination with a cesium‐based perovskite top cell, this leads to tandem cell power‐conversion efficiencies of up to 22.7% obtained from JV measurements and steady‐state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady‐state efficiency of 18%.  相似文献   

7.
Organic bulk heterojunction (BHJ) solar cells require energetic offsets between the donor and acceptor to obtain high short‐circuit currents (JSC) and fill factors (FF). However, it is necessary to reduce the energetic offsets to achieve high open‐circuit voltages (VOC). Recently, reports have highlighted BHJ blends that are pushing at the accepted limits of energetic offsets necessary for high efficiency. Unfortunately, most of these BHJs have modest FF values. How the energetic offset impacts the solar cell characteristics thus remains poorly understood. Here, a comprehensive characterization of the losses in a polymer:fullerene BHJ blend, PIPCP:phenyl‐C61‐butyric acid methyl ester (PC61BM), that achieves a high VOC (0.9 V) with very low energy losses (Eloss = 0.52 eV) from the energy of absorbed photons, a respectable JSC (13 mA cm?2), but a limited FF (54%) is reported. Despite the low energetic offset, the system does not suffer from field‐dependent generation and instead it is characterized by very fast nongeminate recombination and the presence of shallow traps. The charge‐carrier losses are attributed to suboptimal morphology due to high miscibility between PIPCP and PC61BM. These results hold promise that given the appropriate morphology, the JSC, VOC, and FF can all be improved, even with very low energetic offsets.  相似文献   

8.
Length of the terminal alkyl chains at dicyanovinyl (DCV) groups of two dithienosilole (DTS) containing small molecules ( DTS(Oct)2‐(2T‐DCV‐Me)2 and DTS(Oct)2‐(2T‐DCV‐Hex)2 ) is investigated to evaluate how this affects the molecular solubility and blend morphology as well as their performance in bulk heterojunction organic solar cells (OSCs). While the DTS(Oct)2‐(2T‐DCV‐Me)2 (a solubility of 5 mg mL?1) system exhibits both high short circuit current density (J sc) and high fill factor, the DTS(Oct)2‐(2T‐DCV‐Hex)2 (a solubility of 24 mg mL?1) system in contrast suffers from a poor blend morphology as examined by atomic force morphology and grazing incidence X‐ray scattering measurements, which limit the photovoltaic properties. The charge generation, transport, and recombination dynamics associated with the limited device performance are investigated for both systems. Nongeminate recombination losses in DTS(Oct)2‐(2T‐DCV‐Hex)2 system are demonstrated to be significant by combining space charge limited current analysis and light intensity dependence of current–voltage characteristics in combination with photogenerated charge carrier extraction by linearly increasing voltage and transient photovoltage measurements. DTS(Oct)2‐(2T‐DCV‐Me)2 in contrast performs nearly ideal with no evidence of nongeminate recombination, space charge effects, or mobility limitation. These results demonstrate the importance of alkyl chain engineering for solution‐processed OSCs based on small molecules as an essential design tool to overcome transport limitations.  相似文献   

9.
The interplay between nanomorphology and efficiency of polymer‐fullerene bulk‐heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small‐molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2‐b:4,5‐b]dithiophene‐pyrido[3,4‐b]‐pyrazine BDT(PPTh2)2, namely SM1 and SM2, differing by their side‐chains, are examined as a function of solution additive composition. The results show that the additive 1,8‐diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM‐based BHJ solar cells compared with polymer‐fullerene devices. In polymer‐based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM‐based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes.  相似文献   

10.
Achieving the highest power conversion efficiencies in bulk heterojunction organic solar cells requires a morphology that delivers electron and hole percolation pathways for optimized transport, plus sufficient donor:acceptor contact area for near unity charge transfer state formation. This is a significant structural challenge, particularly in semiconducting polymer:fullerene systems. This balancing act in the model high efficiency PTB7:PC70BM blend is studied by tuning the donor:acceptor ratio, with a view to understanding the recombination loss mechanisms above and below the fullerene transport percolation threshold. The internal quantum efficiency is found to be strongly correlated to the slower carrier mobility in agreement with other recent studies. Furthermore, second‐order recombination losses dominate the shape of the current density–voltage curve in efficient blend combinations, where the fullerene phase is percolated. However, below the charge transport percolation threshold, there is an electric‐field dependence of first‐order losses, which includes electric‐field‐dependent photogeneration. In the intermediate regime, the fill factor appears to be limited by both first‐ and second‐order losses. These findings provide additional basic understanding of the interplay between the bulk heterojunction morphology and the order of recombination in organic solar cells. They also shed light on the limitations of widely used transport models below the percolation threshold.  相似文献   

11.
This study demonstrates high‐performance, ternary‐blend polymer solar cells by modifying a binary blend bulk heterojunction (PPDT2FBT:PC71BM) with the addition of a ternary component, PPDT2CNBT. PPDT2CNBT is designed to have complementary absorption and deeper frontier energy levels compared to PPDT2FBT, while being based on the same polymeric backbone. A power conversion efficiency of 9.46% is achieved via improvements in both short‐circuit current density (JSC) and open‐circuit voltage (VOC). Interestingly, the VOC increases with increasing the PPDT2CNBT content in ternary blends. In‐depth studies using ultraviolet photoelectron spectroscopy and transient absorption spectroscopy indicate that the two polymers are not electronically homogeneous and function as discrete light harvesting species. The structural similarity between PPDT2CNBT and PPDT2FBT allows the merits of a ternary system to be fully utilized to enhance both JSC and VOC without detriment to fill‐factor via minimized disruption of semi‐crystalline morphology of binary PPDT2FBT:PC71BM blend. Further, by careful analysis, charge carrier transport in this ternary blend is clearly verified to follow parallel‐like behavior.  相似文献   

12.
This work reports on combining current‐voltage characteristics, electroluminescence (EL) measurements, and modeling to identify the selectivity of the electrodes in bulk‐heterojunction organic solar cells. Devices with the same photoactive layer but different contact materials are compared and the impact of surface recombination at the contacts on their performance is determined. The open‐circuit voltage, V OC, depends strongly on the selectivity of the electrodes and it is observed that the EL signal of cells with lower V OC is dramatically reduced. This is ascribed to an enhanced rate of surface recombination, which is a non‐radiative recombination pathway and does therefore not contribute to the EL yield. In addition, these cells have a lower current in forward direction despite the fact that the surface recombination occurs in addition to the recombination in the bulk. A theoretical model was set up and in the corresponding numerical simulations all three findings (lower V OC, strongly reduced EL signal and lower forward current) could be clearly reproduced by varying just one single parameter which determines the selectivity of the electrode.  相似文献   

13.
We report on the effects of screening of the electric field by doping‐induced mobile charges on photocurrent collection in operational organic solar cells. Charge transport and recombination were studied using double injection (DI) and charge extraction by linearly increasing voltage (CELIV) transient techniques in bulk‐heterojunction solar cells made from acceptor‐donor blends of poly(3‐n‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PC60BM). It is shown that the screening of the built‐in field in operational solar cells can be controlled by an external voltage while the influence on charge transport and recombination is measured. An analytical theory to extract the bimolecular recombination coefficient as a function of electric field from the injection current is also reported. The results demonstrate that the suppressed (non‐Langevin) bimolecular recombination rate and charge collection are not strongly affected by native doping levels in this materials combination. Hence, it is not necessary to reduce the level of doping further to improve the device performance of P3HT‐based solar cells.  相似文献   

14.
Sequential deposition has great potential to achieve high performance in organic solar cells due to the resulting well‐controlled vertical phase separation. In this work, double bulk heterojunction organic solar cells are fabricated by sequential‐blade cast in ambient conditions. Probed by the in situ grazing incidence X‐ray diffraction and in situ UV–vis absorption measurements, the seq‐blade system exhibits a different tendency from each of the binary films during the film formation process. Due to the extensive aggregation of FOIC, the binary PBDB‐T:FOIC film displays a strong and large phase separation, resulting in low current density (Jsc) and unsatisfactory power conversion efficiency. In the seq‐blade cast system, the bottom layer PBDB‐T:IT‐M produces many crystal nuclei for the top layer PBDB‐T:FOIC, so the PBDB‐T molecules are able to crystallize easily and quickly. Balanced crystallization kinetics between polymer and small molecule and an ideal percolation network in the film are observed. In addition, the balanced crystallization kinetics are favorable toward realizing lower recombination loss through charge transport processes.  相似文献   

15.
Poly(benzo[1,2‐b:4,5‐b′]dithiophene–alt–thieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD) polymer donors with linear side‐chains yield bulk‐heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl‐C71‐butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub‐nanosecond geminate recombination. In turn the yield of long‐lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X‐ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin‐film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.  相似文献   

16.
Zn(II)–porphyrin sensitizers, coded as SGT‐020 and SGT‐021 , are designed and synthesized through donor structural engineering. The photovoltaic (PV) performances of SGT sensitizer‐based dye‐sensitized solar cells (DSSCs) are systematically evaluated in a thorough SM315 as a reference sensitizer. The effect of the donor ability and the donor bulkiness on photovoltaic performances is investigated for establishing the structure–performance relationship in the platform of porphyrin‐triple bond‐benzothiadiazole‐acceptor sensitizers. By introducing a more bulky fluorene unit to the amine group in the SM315 , the power conversion efficiency (PCE) is enhanced with the increased short‐circuit current (Jsc) and open‐circuit voltage (Voc), due to the improved light‐harvesting ability and the efficient prevention of charge recombination, respectively. As a consequence, a maximum PCE of 12.11% is obtained for SGT‐021 , whose PCE is much higher than the 11.70% PCE for SM315 . To further improve their maximum efficiency, the first parallel tandem DSSCs employing cobalt electrolyte in the top and bottom cells are demonstrated and an extremely high efficiency of 14% is achieved, which is currently the highest reported value for tandem DSSCs. The series tandem DSSCs give a remarkably high Voc value of >1.83 V. From this DSSC tandem configuration, 7.4% applied bias photon‐to‐current efficiency is achieved for solar water splitting.  相似文献   

17.
Nongeminate recombination in organic solar cells based on copper phthalocyanine (CuPc) and C60 is investigated. Two device architectures, the planar heterojunction (PHJ) and the bulk heterojunction (BHJ), are directly compared in view of differences in charge carrier decay dynamics. A combination of transient photovoltage (TPV) experiments, yielding the small perturbation charge carrier lifetime, and charge extraction measurements, providing the charge carrier density is applied. In organic solar cells, charge photogeneration and recombination primarily occur at the donor–acceptor heterointerface. Whereas the BHJ can often be approximated by an effective medium due to rather small scale phase separation, the PHJ has a well defined two‐dimensional heterointerface. In order to study nongeminate recombination dynamics in PHJ devices the charge accumulation at this interface is most relavent. As only the spatially averaged carrier concentration can be determined from extraction techniques, the charge carrier density at the interface nint is derived from the open circuit voltage. Comparing the experimental results with macroscopic device simulation, the differences of recombination and charge carrier densities in CuPc:C60 PHJ and BHJ devices are discussed with respect to the device performance. The open circuit voltage of BHJ is larger than for PHJ at low light intensities, but at 0.3 sun the situation is reversed: here, the PHJ can finally take advantage of its generally longer charge carrier lifetimes, as the active recombination region is smaller.  相似文献   

18.
An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time‐delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two‐pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device‐relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide‐bandgap donor polymers: poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)‐state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.  相似文献   

19.
Solution‐processed organic bulk heterojunction solar cells based on poly(3‐hexylthiophene) (P3HT) blended with [6,6]‐phenyl‐C60‐butyric acid methyl ester are doped with different concentrations of iron (II,III) oxide nanoparticles (Fe3O4). The power conversion efficiency of the devices doped at low concentrations is improved up to 11%. The improvement finds its origin in a lower recombination current, which is a consequence of an increased effective exciton lifetime according to the J–V characteristics and the optoelectronical analysis of the films. The increase in performance cannot be attributed to changes in morphology or crystallinity according to grazing‐incidence X‐ray scattering experiments. The evolution of the solar cell short‐circuit current at low doping concentrations is related to variations in the arrangement of the crystalline regions of P3HT. For high doping concentrations (above 1.0 wt%) the performance of the solar cell decays rapidly, ascribed to the increased leakage currents in the device caused by the presence of nanoparticles.  相似文献   

20.
Organic solar cells (OSCs) are promising low‐cost devices for generating electricity. In addition to fill factor, the short circuit current density (JSC) and the open circuit voltage (VOC) are two key factors that have critical influence on the device performance. The energy levels of the donor and acceptor materials are crucial for achieving a high JSC and VOC. However, the interfacial structures between the organic materials substantially affect the JSC and VOC through the energy of the charge transfer (CT) states and the charge separation and recombination reaction kinetics. Here, it is reported that separating the donor and acceptor layer in bilayer OSCs with a thin insulating layer increases the energy of the CT state by weakening the Coulomb interaction at the interface and this also suppresses photoinduced CT and recombination. Although these effects usually increase VOC and decrease JSC, the trade‐off is avoided by doping the insulating layer with a dye to utilize the energy transfer process. The increase in VOC without the reduction in JSC enhances the conversion efficiency of the OSCs by 30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号