首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of solution‐processable routes to prepare efficient photoelectrodes for water splitting is highly desirable to reduce manufacturing costs. Recently, sulfide chalcopyrites (Cu(In,Ga)S2) have attracted attention as photocathodes for hydrogen evolution owing to their outstanding optoelectronic properties and their band gap—wider than their selenide counterparts—which can potentially increase the attainable photovoltage. A straightforward and all‐solution‐processable approach for the fabrication of highly efficient photocathodes based on Cu(In,Ga)S2 is reported for the first time. It is demonstrated that semiconductor nanocrystals can be successfully employed as building blocks to prepare phase‐pure microcrystalline thin films by incorporating different additives (Sb, Bi, Mg) that promote the coalescence of the nanocrystals during annealing. Importantly, the grain size is directly correlated to improved charge transport for Sb and Bi additives, but it is shown that secondary effects can be detrimental to performance even with large grains (for Mg). For optimized electrodes, the sequential deposition of thin layers of n‐type CdS and TiO2 by solution‐based methods, and platinum as an electrocatalyst, leads to stable photocurrents saturating at 8.0 mA cm–2 and onsetting at ≈0.6 V versus RHE under AM 1.5G illumination for CuInS2 films. Electrodes prepared by our method rival the state‐of‐the‐art performance for these materials.  相似文献   

2.
As the theoretical limit of intercalation material‐based lithium‐ion batteries is approached, alternative chemistries based on conversion reactions are presently considered. The conversion of sulfur is particularly appealing as it is associated with a theoretical gravimetric energy density up to 2510 Wh kg?1. In this paper, three different carbon‐iron disulfide‐sulfur (C‐FeS2‐S) composites are proposed as alternative positive electrode materials for all‐solid‐state lithium‐sulfur batteries. These are synthesized through a facile, low‐cost, single‐step ball‐milling procedure. It is found that the crystalline structure (evaluated by X‐ray diffraction) and the morphology of the composites (evaluated by scanning electron microscopy) are greatly influenced by the FeS2:S ratio. Li/LiI‐Li3PS4/C‐FeS2‐S solid‐state cells are tested under galvanostatic conditions, while differential capacity plots are used to discuss the peculiar electrochemical features of these novel materials. These cells deliver capacities as high as 1200 mAh g(FeS2+S)?1 at the intermediate loading of 1 mg cm?2 (1.2 mAh cm?2), and up to 3.55 mAh cm?2 for active material loadings as high as 5 mg cm?2 at 20 °C. Such an excellent performance, rarely reported for (sulfur/metal sulfide)‐based, all solid‐state cells, makes these composites highly promising for real application where high positive electrode loadings are required.  相似文献   

3.
Perovskite‐type solid‐state electrolytes exhibit great potential for the development of all‐solid‐state lithium batteries due to their high Li‐ion conductivity (approaching 10?3 S cm?1), wide potential window, and excellent thermal/chemical stability. However, the large solid–solid interfacial resistance between perovskite electrolytes and electrode materials is still a great challenge that hinders the development of high‐performance all‐solid‐state lithium batteries. In this work, a perovskite‐type Li0.34La0.51TiO3 (LLTO) membrane with vertically aligned microchannels is constructed by a phase‐inversion method. The 3D vertically aligned microchannel framework membrane enables more effective Li‐ion transport between the cathode and solid‐state electrolyte than a planar LLTO membrane. A significant decrease in the perovskite/cathode interfacial resistance, from 853 to 133 Ω cm2, is observed. It is also demonstrated that full cells utilizing LLTO with vertically aligned microchannels as the electrolyte exhibit a high specific capacity and improved rate performance.  相似文献   

4.
While the practical application of electrode materials depends intensively on the Li+ ion storage mechanisms correlating ultimately with the coulombic efficiency, reversible capacity, and morphology variation of electrode material upon cycling, only intercalation‐type electrode materials have proven viable for commercialization up to now. This paper reviews the promising anode materials of metal vanadates (MxVyOz, M = Co, Cu, Mn, Fe, Zn, Ni, Li) that have high capacity, low cost, and abundant resource, and also discusses the related Li+ ion storage mechanism. It is concluded that most of these (MxVyOz, M = Co, Cu, Mn, Fe, Zn, Ni) exhibit irreversible redox reactions upon lithiation/delithiation accompanied by large volume expansion, which is not favorable for industrial applications. In particular, Li3VO4 with specific intercalation Li+ ion storage mechanism and compatible merits of safety and energy density exhibits great potential for practical application. This review systematically summarizes the latest progress in Li3VO4 research, including the representative fabrication approaches for advanced morphology and state‐of‐the‐art technologies to boost performance and the morphology variation associated with Li+ ion storage mechanisms. Furthermore, an outlook on where breakthroughs for Li3VO4 may be most likely achieved will be provided.  相似文献   

5.
Fiber‐based power sources are receiving interest in terms of application in wearable electronic devices. Herein, fiber‐shaped all‐solid‐state asymmetric energy storage devices are fabricated based on a partially nitridized NiCo2O4 hybrid nanostructures on graphite fibers (GFs). The surface nitridation leads to a 3D “pearled‐veil” network structure, in which Ni–Co–N nanospheres are mounted on NiCo2O4 nanosheets' electrode. It is demonstrated that the hybrid materials are more potent than the pure NiCo2O4 in energy storage applications due to a cooperative effect between the constituents. The Ni–Co–N segments augment the pristine oxide nanosheets by enhancing both capacity and rate performance (a specific capacity of 384.75 mAh g−1 at 4 A g−1, and a capacity retention of 86.5% as the current is increased to 20 A g−1). The whole material system has a metallic conductivity that renders high‐rate charge and discharge, and an extremely soft feature, so that it can wrap around arbitrary‐shaped holders. All‐solid‐state asymmetric device is fabricated using Ni–Co–N/NiCo2O4/GFs and carbon nanotubes/GFs as the electrodes. The flexible device delivers outstanding performance compared to most oxide‐based full devices. These structured hybrid materials may find applications in miniaturized foldable energy devices.  相似文献   

6.
Solid‐state Li secondary batteries may become high energy density storage devices for the next generation of electric vehicles, depending on the compatibility of electrode materials and suitable solid electrolytes. Specifically, it is a great challenge to obtain a stable interface between these solid electrolytes and cathodes. Herein, this issue can be effectively addressed by constructing a poly(acrylonitrile‐co‐butadiene) coated layer onto the surface of LiNi0.6Mn0.2Co0.2O2 cathode materials. The polymer layer plays a vital role in working as a protective shell to retard side reaction and ameliorate the contact of the solid–solid interface during the cycling process. In the resultant solid‐state batteries, both rate capacity (99 mA h g?1 at 3 C) and cycling stability (75% capacity retention after 400 cycles) are improved after coating. This impressive performance highlights the great importance of layer modification in the cathode and inspires the development of solid‐state batteries toward practical applications.  相似文献   

7.
To pursue a higher energy density (>300 Wh kg?1 at the cell level) and a lower cost (<$125 kWh?1 expected at 2022) of Li‐ion batteries for making electric vehicles (EVs) long range and cost‐competitive with internal combustion engine vehicles, developing Ni‐rich/Co‐poor layered cathode (LiNi1?x?yCoxMnyO2, x+y ≤ 0.2) is currently one of the most promising strategies because high Ni content is beneficial to high capacity (>200 mAh g?1) while low Co content is favorable to minimize battery cost. Unfortunately, Ni‐rich cathodes suffer from limited structure stability and electrode/electrolyte interface stability in the charged state, leading to electrode degradation and poor cycling performance. To address these problems, various strategies have been employed such as doping, structural optimization design (e.g., core–shell structure, concentration‐gradient structure, etc.), and surface coating. In this review, five key aspects of Ni‐rich/Co‐poor layered cathode materials are explored: energy density, fast charge capability, service life including cycling life and calendar life, cost and element resources, and safety. This enables a comprehensive analysis of current research advances and challenges from the perspective of both academy and industry to help facilitate practical applications for EVs in the future.  相似文献   

8.
High energy density and power density within a limited volume of flexible solid‐state supercapacitors are highly desirable for practical applications. Here, free‐standing high‐quality 3D nanoporous duct‐like graphene (3D‐DG) films are fabricated with high flexibility and robustness as the backbones to deposit flower‐like MnO2 nanosheets (3D‐DG@MnO2). The 3D‐DG is the ideal support for the deposition of large amount of active materials because of its large surface area, appropriate pore structure, and negligible volume compared with other kinds of carbon backbones. Moreover, the 3D‐DG preserve the distinctive 2D coherent electronic properties of graphene, in which charge carriers move rapidly with a small resistance through the high‐quality and continuous chemical vapor deposition‐grown graphene building blocks, which results in a high rate performance. Marvelously, ultrathin (≈50 μm) flexible solid‐state asymmetric supercapacitors (ASCs) using 3D‐DG@MnO2 as the positive electrode and 3D hierarchical nanoporous graphene films as the negative electrode display ultrahigh volumetric energy density (28.2 mW h cm?3) and power density (55.7 W cm?3) at 2.0 V. Furthermore, as‐prepared ASCs show high cycle stability clearly demonstrating their broad applications as power supplies in wearable electronic devices.  相似文献   

9.
Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li3AlH6‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH4 and Li with the help of fast electron and Li‐ion conductors (C and P63mc LiBH4). This nanocomposite consists of dispersive Al nanograins and an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g?1), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g?1 at 1 A g?1) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li3AlH6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior.  相似文献   

10.
A new series of 4‐hexyl‐4H‐thieno[3,2‐b]indole (HxTI) based organic chromophores is developed by structural engineering of the electron donor (D) group in the D–HxTI–benzothiadiazole‐phenyl‐acceptor platform with different fluorenyl moieties, such as unsubstituted fluorenyl (SGT‐146) and hexyloxy (SGT‐147), decyloxy (SGT‐148) and hexyloxy‐phenyl substituted (SGT‐149) fluorenyl moieties. In comparison to a reference dye SGT‐137 with a biphenyl‐based donor, the effects of the donating ability and bulkiness of the fluorenyl based donor in this D–π–A‐structured platform on molecular properties and photovoltaic performance are investigated to establish the structure–property relationship. The photovoltaic performance of dye‐sensitized solar cells (DSSCs) is improved according to the bulkiness of the donor groups. As a result, the DSSCs based on SGT‐149 show high power conversion efficiencies (PCEs) of 11.7% and 10.0% with a [Co(bpy)3]2+/3+ (bpy = 2,2′‐bipyridine) and an I?/I3? redox electrolyte, respectively. Notably, the co‐sensitization of SGT‐149 with a SGT‐021 porphyrin dye by utilizing a simple “cocktail” method, exhibit state‐of‐the‐art PCEs of 14.2% and 11.6% with a [Co(bpy)3]2+/3+ and an I?/I3? redox electrolyte, respectively.  相似文献   

11.
Solution‐processable small molecules are significant for producing high‐performance bulk heterojunction organic solar cells (OSCs). Shortening alkyl chains, while ensuring proper miscibility with fullerene, enables modulation of molecular stacking, which is an effective method for improving device performance. Here, the design and synthesis of two solution‐processable small molecules based on a conjugated backbone with a novel end‐capped acceptor (oxo–alkylated nitrile) using octyl and hexyl chains attached to π–bridge, and octyl and pentyl chains attached to the acceptor is reported. Shortening the length of the widely used octyl chains improves self‐assembly and device performance. Differential scanning calorimetry and grazing incidence X‐ray diffraction results demonstrated that the molecule substituted by shorter chains shows tighter molecular stacking and higher crystallinity in the mixture with 6,6‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and that the power conversion efficiency (PCE) of the OSC is as high as 5.6% with an open circuit voltage (Voc) of 0.87 V, a current density (Jsc) of 9.94 mA cm‐2, and an impressive filled factor (FF) of 65% in optimized devices. These findings provide valuable insights into the production of highly efficient solution‐processable small molecules for OSCs.  相似文献   

12.
This paper reports the synthesis and characterization of 2‐(4‐ethoxyphenyl)‐4‐phenyl quinoline (OEt‐DPQ) organic phosphor using an acid‐catalyzed Friedlander reaction and the preparation of blended thin films by molecularly doping OEt‐DPQ in poly(methyl methacrylate) (PMMA) at different wt%. The molecular structure of the synthesized phosphor was confirmed by Fourier transform infra‐red (FTIR) spectroscopy and nuclear magnetic resonance spectra (NMR). Surface morphology and percent composition of the elements were assessed by scanning electron microscopy (SEM) and energy dispersive analysis of X‐rays (EDAX). The thermal stability and melting point of OEt‐DPQ and thin films were probed by thermo‐gravimetric analysis (TGA)/differential thermal analysis (DTA) and were found to be 80°C and 113.6°C, respectively. UV–visible optical absorption spectra of OEt‐DPQ in the solid state and blended films produced absorption bands in the range 260–340 nm, while photoluminescence (PL) spectra of OEt‐DPQ in the solid state and blended thin films demonstrated blue emission that was registered at 432 nm when excited at 363–369 nm. However, solvated OEt‐DPQ in chloroform, tetrahydrofuran or dichloromethane showed a blue shift of 31–43 nm. Optical absorption and emission parameters such as molar extinction coefficient (ε), energy gap (Eg), transmittance (T), reflectance (R), refractive index (n), oscillator energy (E0) and oscillator strength (f), quantum yield (φf), oscillator energy (E0), dispersion energy (Ed), Commission Internationale de l'Éclairage (CIE) co‐ordinates and energy yield fluorescence (EF) were calculated to assess the phosphor's suitability as a blue emissive material for opto‐electronic applications such as organic light‐emitting diodes (OLEDs), flexible displays and solid‐state lighting technology.  相似文献   

13.
Sulfide Na‐ion solid electrolytes (SEs) are key to enable room‐temperature operable all‐solid‐state Na‐ion batteries that are attractive for large‐scale energy storage applications. To date, few sulfide Na‐ion SEs have been developed and most of the SEs developed contain P and suffer from poor chemical stability. Herein, discovery of a new structural class of tetragonal Na4?xSn1?xSbxS4 (0.02 ≤ x ≤ 0.33) with space group I41/acd is described. The evolution of a new phase, distinctly different from Na4SnS4 or Na3SbS4, allows fast ionic conduction in 3D pathways (0.2–0.5 mS cm?1 at 30 °C). Moreover, their excellent air stability and reversible dissolution in water and precipitation are highlighted. Specifically, TiS2/Na–Sn all‐solid‐state Na‐ion batteries using Na3.75Sn0.75Sb0.25S4 demonstrates high capacity (201 mA h (g of TiS2)?1) with excellent reversibility.  相似文献   

14.
Li and Mn‐rich layered oxides, xLi2MnO3·(1–x)LiMO2 (M=Ni, Mn, Co), are promising cathode materials for Li‐ion batteries because of their high specific capacity that can exceed 250 mA h g?1. However, these materials suffer from high 1st cycle irreversible capacity, gradual capacity fading, low rate capability, a substantial charge‐discharge voltage hysteresis, and a large average discharge voltage decay during cycling. The latter detrimental phenomenon is ascribed to irreversible structural transformations upon cycling of these cathodes related to potentials ≥4.5 V required for their charging. Transition metal inactivation along with impedance increase and partial layered‐to‐spinel transformation during cycling are possible reasons for the detrimental voltage fade. Doping of Li, Mn‐rich materials by Na, Mg, Al, Fe, Co, Ru, etc. is useful for stabilizing capacity and mitigating the discharge‐voltage decay of xLi2MnO3·(1–x)LiMO2 electrodes. Surface modifications by thin coatings of Al2O3, V2O5, AlF3, AlPO4, etc. or by gas treatment (for instance, by NH3) can also enhance voltage and capacity stability during cycling. This paper describes the recent literature results and ongoing efforts from our groups to improve the performance of Li, Mn‐rich materials. Focus is also on preparation of cobalt‐free cathodes, which are integrated layered‐spinel materials with high reversible capacity and stable performance.  相似文献   

15.
A new self‐assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO2 films is presented, based on the triblock terpolymer poly(isoprene ‐ b ‐ styrene ‐ b ‐ ethylene oxide). This new materials route allows the co‐assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state‐of‐the‐art nanoparticle‐based photoanodes employed in solid‐state dye‐sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub‐bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state‐of‐the‐art organic dye, C220. As a consequence, the co‐assembled mesoporous metal oxide system outperformed the conventional nanoparticle‐based electrodes fabricated and tested under the same conditions, exhibiting solar power‐conversion efficiencies of over 5%.  相似文献   

16.
Na batteries are seen as a feasible alternative technology to lithium ion batteries due to the greater abundance of sodium and potentially similar electrochemical behavior. In this work, mixed phase electrolyte materials based on solid‐state compositions of a tri methylisobutylphosphonium (P111i4) bis(tri fluromethanesulphonyl)amide (NTf2) organic ionic plastic crystal (OIPC) and high concentration of NaNTf2 that support safe, sodium metal electrochemistry are demonstrated. A Na symmetric cell can be cycled efficiently, even in the solid state (at 50 °C and 60 °C), for a 25 mol% (P111i4NTf2)–75 mol% NaNTf2 composition at 0.1 mA cm?2 for 100 cycles. Thus, these mixed phase materials can be potentially used in Na‐based devices under moderate temperature conditions. It is also investigated that the phase behavior, conductivity, and electrochemical properties of mixtures of NaNTf2 with this OIPC. It is observed that these mixtures have complex phase behavior. For high compositions of the Na salt, the materials are solid at room temperature and retain a soft solid consistency even at 50 °C with remarkably high conductivity, approaching that of the pure ionic liquid at 50 °C, i.e., 10?3–10?2 S cm?1.  相似文献   

17.
We report a comparative study on the use of four different mesoporous titanium dioxide (TiO2) photo‐electrodes for the fabrication of solid‐state dye‐sensitized solar cells (sDSSCs). The photovoltaic parameters of the device correlate with several intrinsic properties of the film, based not only on its morphological features, as commonly considered in standard characterizations, but also on the transport and the electronic properties of the photo‐electrode. These properties differ significantly for TiO2 electrodes processed using different colloidal pastes, and are decisive for the photovoltaic efficiency, ranging from 3.7% up to 5.1%. In particular, the dielectric permittivity of each mesoporous layer (εeff) and the number of traps (Nt) determined by the space‐charge‐limited current (SCLC) theory are found to be a bottle‐neck for the charge transport, greatly influencing the fill factor (FF) and open circuit voltage (Voc) of the cells. In addition, a direct correlation between TiO2 surface potential with the Voc was established. Cross‐analysis of key macroscopic parameters of the films prior to integration in the devices, in particular focusing on the determination of the capacitance and surface potential shift of the TiO2 mesoporous anode, represents a straightforward yet powerful method to screen and select the most suitable TiO2 for applications in sDSSCs.  相似文献   

18.
Finding suitable electrode materials for alkali‐metal‐ion storage is vital to the next‐generation energy‐storage technologies. Polyantimonic acid (PAA, H2Sb2O6 · nH2O), having pentavalent antimony species and an interconnected tunnel‐like pyrochlore crystal framework, is a promising high‐capacity energy‐storage material. Fabricating electrochemically reversible PAA electrode materials for alkali‐metal‐ion storage is a challenge and has never been reported due to the extremely poor intrinsic electronic conductivity of PAA associated with the highest oxidation state Sb(V). Combining nanostructure engineering with a conductive‐network construction strategy, here is reported a facile one‐pot synthesis protocol for crafting uniform internal‐void‐containing PAA nano‐octahedra in a composite with nitrogen‐doped reduced graphene oxide nanosheets (PAA?N‐RGO), and for the first time, realizing the reversible storage of both Li+ and K+ ions in PAA?N‐RGO. Such an architecture, as validated by theoretical calculations and ex/in situ experiments, not only fully takes advantage of the large‐sized tunnel transport pathways (0.37 nm2) of PAA for fast solid‐phase ionic diffusion but also leads to exponentially increased electrical conductivity (3.3 S cm?1 in PAA?N‐RGO vs 4.8 × 10?10 S cm?1 in bare‐PAA) and yields an inside‐out buffer function for accommodating volume expansion. Compared to electrochemically irreversible bare‐PAA, PAA?N‐RGO manifests reversible conversion‐alloying of Sb(V) toward fast and durable Li+‐ and K+‐ion storage.  相似文献   

19.
Various doped materials have been investigated to improve the structural stability of layered transition metal oxides for lithium‐ion batteries. Most doped materials are obtained through solid state methods, in which the doping of cations is not strictly site selective. This paper demonstrates, for the first time, an in situ electrochemical site‐selective doping process that selectively substitutes Li+ at Li sites in Mn‐rich layered oxides with Mg2+. Mg2+ cations are electrochemically intercalated into Li sites in delithiated Mn‐rich layered oxides, resulting in the formation of [Li1?xMgy][Mn1?zMz]O2 (M = Co and Ni). This Mg2+ intercalation is irreversible, leading to the favorable doping of Mg2+ at the Li sites. More interestingly, the amount of intercalated Mg2+ dopants increases with the increasing amount of Mn in Li1?x[Mn1?zMz]O2, which is attributed to the fact that the Mn‐to‐O electron transfer enhances the attractive interaction between Mg2+ dopants and electronegative Oδ? atoms. Moreover, Mg2+ at the Li sites in layered oxides suppresses cation mixing during cycling, resulting in markedly improved capacity retention over 200 cycles. The first‐principle calculations further clarify the role of Mg2+ in reduced cation mixing during cycling. The new concept of in situ electrochemical doping provides a new avenue for the development of various selectively doped materials.  相似文献   

20.
Fiber‐supercapacitors (FSCs) are promising energy storage devices that can complement or even replace microbatteries in miniaturized portable and wearable electronics. Currently, a major challenge for FSCs is achieving ultrahigh volumetric energy and power densities simultaneously, especially when the charge/discharge rates exceed 1 V s?1. Herein, an Au‐nanoparticle‐doped‐MnOx@CoNi‐alloy@carbon‐nanotube (Au–MnOx@CoNi@CNT) core/shell nanocomposite fiber electrode is designed, aiming to boost its charge/discharge rate by taking advantage of the superconductive CoNi alloy network and the greatly enhanced conductivity of the Au doped MnOx active materials. An all‐solid‐state coaxial asymmetric FSC (CAFSC) prototype device made by wrapping this fiber with a holey graphene paper (HGP) exhibits excellent performance at rates up to 10 V s?1, which is the highest charge rate demonstrated so far for FSCs based on pseudocapacitive materials. Furthermore, our fully packaged CAFSC delivers a volumetric energy density of ≈15.1 mW h cm?3, while simultaneously maintaining a high power density of 7.28 W cm?3 as well as a long cycle life (90% retention after 10 000 cycles). This value is the highest among all reported FSCs, even better than that of a typical 4 V/500 µA h thin‐film lithium battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号