首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium–sulfur batteries (LSBs) are currently considered as promising candidates for next‐generation energy storage technologies. However, their practical application is hindered by the critical issue of the polysulfide‐shuttle. Herein, a metal organic framework (MOF)‐derived solid electrolyte is presented to address it. The MOF solid electrolyte is developed based on a Universitetet i Oslo (UIO) structure. By grafting a lithium sulfonate (‐SO3Li) group to the UIO ligand, both the ionic conductivity and the polysulfide‐suppression capability of the resulting ‐SO3Li grafted UIO (UIOSLi) solid electrolyte are greatly improved. After integrating a Li‐based ionic liquid (Li‐IL), lithium bis(trifluoromethanesulfonyl)imide in 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide, the resulting Li‐IL/UIOSLi solid electrolyte exhibits an ionic conductivity of 3.3 × 10?4 S cm?1 at room temperature. Based on its unique structure, the Li‐IL/UIOSLi solid electrolyte effectively restrains the polysulfide shuttle and suppresses lithium dendritic growth. Lithium–sulfur cells with the Li‐IL/UIOSLi solid electrolyte and a Li2S6 catholyte show stable cycling performance that preserves 84% of the initial capacity after 250 cycles with a capacity‐fade rate of 0.06% per cycle.  相似文献   

2.
The insulating nature of sulfur, polysulfide shuttle effect, and lithium‐metal deterioration cause a decrease in practical energy density and fast capacity fade in lithium‐sulfur (Li‐S) batteries. This study presents an integrated strategy for the development of hybrid Li‐S batteries based on a gel sulfur cathode, a solid electrolyte, and a protective anolyte composed of a highly concentrated salt electrolyte containing mixed additives. The dense solid electrolyte completely blocks polysulfide diffusion, and also makes it possible to investigate the cathode and anode independently. This gel cathode effectively traps the polysulfide active material while maintaining a low electrolyte to sulfur ratio of 5.2 mL g?1. The anolyte effectively protects the Li metal and suppresses the consumption of liquid electrolyte, enabling stable long‐term cycling for over 700 h in Li symmetric cells. This advanced design can simultaneously suppress the polysulfide shuttle, protect Li metal, and reduce the liquid electrolyte usage. The assembled hybrid batteries exhibit remarkably stable cycling performance over 300 cycles with high capacity. Finally, surface‐sensitive techniques are carried out to directly visualize and probe the interphase formed on the surface of the Li1.5Al0.5Ge1.5(PO4)3 (LAGP) pellet, which may help stabilize the solid–liquid interface.  相似文献   

3.
A bifunctional hybrid electrolyte composed of mesoporous silica nanosheets and liquid electrolyte is achieved for lithium–sulfur (Li–S) batteries. This hybrid electrolyte possesses abundant mesopores (2.8 nm), thin feature (20 µm), and high ionic conductivity (1.17 × 10?1 mS cm?1) as well as a low interfacial resistance with electrodes. Such unique features not only enable the efficient inhibition of the growth of lithium dendrites, but also significantly prevents polysulfide shuttling. Consequently, a Li–S battery with this hybrid electrolyte exhibits a relatively high reversible capacity and good capacity retention.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Lithium‐sulfur (Li‐S) batteries are one of the most promising next‐generation energy‐storage systems. Nevertheless, the sluggish sulfur redox and shuttle effect in Li‐S batteries are the major obstacles to their commercial application. Previous investigations on adsorption for LiPSs have made great progress but cannot restrain the shuttle effect. Catalysts can enhance the reaction kinetics, and then alleviate the shuttle effect. The synergistic relationship between adsorption and catalysis has become the hotspot for research into suppressing the shuttle effect and improving battery performance. Herein, the adsorption‐catalysis synergy in Li‐S batteries is reviewed, the adsorption‐catalysis designs are divided into four categories: adsorption‐catalysis for LiPSs aggregation, polythionate or thiosulfate generation, and sulfur radical formation, as well as other adsorption‐catalysis. Then advanced strategies, future perspectives, and challenges are proposed to aim at long‐life and high‐efficiency Li‐S batteries.  相似文献   

11.
Lithium–sulfur (Li–S) batteries have a much higher energy density than Li ion batteries and thus are considered as next generation batteries for electric vehicle applications. However, the problem of rapid capacity fading due to the shuttling of soluble polysulfides between electrodes remains the main obstacle for practical applications. Here, a thin and selective interlayer structure has been designed and produced to decrease the charge transfer resistance and mitigate the shuttling problem, simply by coating the surface of cathode with a thin film of functionalized boron nitride nanosheets/graphene. Due to this thin and ultralight interlayer, the specific capacity and cycling stability of the Li–S batteries with a cathode of sulfur‐containing porous carbon nanotubes (≈60 wt% sulfur content) have been improved significantly with a life of over 1000 cycles, an initial specific capacity of 1100 mA h g?1 at 3 C, and a cycle decay as low as 0.0037% per cycle. This new interlayer provides a promising approach to significantly enhance the performance of Li–S batteries.  相似文献   

12.
Lithium–sulfur (Li–S) batteries are being considered as one of the most promising candidates for the development of next‐generation energy storage technologies. Although much progress has been made over the past decade, the development of Li–S batteries is still held back by a crucial polysulfide‐shuttle problem. To address this critical issue, an approach to reduce the pore size of the separator is presented here, to prevent the penetration of soluble polysulfide species. A polymer with intrinsic nanoporosity (PIN) is developed within the micrometer‐scale pores of a polypropylene separator. The framework of polypropylene acts as a skeleton to sustain reliable mechanical properties with the thin membrane. Upon the formation of PIN in the pores, the polypropylene separator maintains its thickness. With the thin PIN–polypropylene membrane, the Li–S cells can be operated with a relatively high sulfur loading. The PIN allows the transport of Li+ ions, but suppresses the penetration of the polysulfide species. The Li–S batteries with the PIN‐modified polypropylene separator exhibit enhanced cycling performance.  相似文献   

13.
Calcium represents a promising anode for the development of high‐energy‐density, low‐cost batteries. However, a lack of suitable electrolytes has restricted the development of rechargeable batteries with a Ca anode. Furthermore, to achieve a high energy density system, sulfur would be an ideal cathode to couple with the Ca anode. Unfortunately, a reversible calcium‐sulfur (Ca‐S) battery has not yet been reported. Herein, a basic study of a reversible nonaqueous room‐temperature Ca‐S battery is presented. The reversibility of the Ca‐S chemistry and high utilization of the sulfur cathode are enabled by employing a Li+‐ion‐mediated calcium‐based electrolyte. Mechanistic insights pursued by spectroscopic, electrochemical, microscopic, and theoretical simulation (density functional theory) investigations imply that the Li+‐ions in the Ca‐electrolyte stimulate the reactivation of polysulfide/sulfide species. The coordination of lithium to sulfur reduces the formation of sturdy Ca‐S ionic bonds, thus boosting the reversibility of the Ca‐S chemistry. In addition, the presence of Li+‐ions facilitates the ionic charge transfer both in the electrolyte and across the solid electrolyte interphase layer, consequently reducing the interfacial and bulk impedance of Ca‐S batteries. As a result, both the utilization of active sulfur in the cathode and the discharge voltage of Ca‐S batteries are significantly improved.  相似文献   

14.
Lithium–sulfur (Li–S) batteries are of great interest due to their high theoretical energy density. However, one of the key issues hindering their real world applications is polysulfide shuttle, which results in severe capacity decay and self‐discharge. Here, a laponite nanosheets/carbon black coated Celgard (LNS/CB‐Celgard) separator to inhibit polysulfide shuttle and to enhance the Li+ conductivity simultaneously is reported. The polysulfide shuttle is efficiently inhibited through strong interactions between the O active sites of the LNS and polysulfides by forming the Li···O and O? S bonds. Moreover, the separator features high Li+ conductivity, fast Li+ diffusion, excellent electrolyte wettability, and high thermal stability. Consequently, the Li–S batteries with the LNS/CB‐Celgard separator and the pure S cathode show a high initial reversible capacity of 1387 mA h g?1 at 0.1 C, high rate performance, superior cycling stability (with a capacity decay rate of 0.06% cycle?1 at 0.2 C and 0.028% cycle?1 at 1.0 C over 500 cycles), and ultralow self‐discharge. The separator could also enhance the performance of other batteries such as the LiFePO4/separator/Li battery. This work sheds a new light on the design and preparation of novel separators for highly stable Li–S batteries via a “green” and cost‐effective approach.  相似文献   

15.
16.
17.
Polysulfide dissolution into the electrolyte and poor electric conductivity of elemental sulfur are well‐known origins for capacity fading in lithium–sulfur batteries. Various smart electrode designs have lately been introduced to avoid these fading mechanisms, most of which demonstrate significantly improved cycle life. Nevertheless, an in‐depth understanding on the effect of sulfur microstructure and nanoscale electron transport near sulfur is currently lacking. In this study, the authors report an organized nanocomposite comprising linear sulfur chains and oleylamine‐functionalized reduced graphene oxide (O‐rGO) to achieve robust cycling performance (81.7% retention after 500 cycles) as well as to investigate the reaction mechanism in different regimes, i.e., S8 dissolution, polysulfide conversion, and Li2S formation. In the nanocomposite, linear sulfur chains terminate with 1,3‐diisopropylbenzene are covalently linked to O‐rGO. The comparison with control samples that do not contain either the capping of sulfur chains or O‐rGO reveals the synergistic interplay between both treatments, simultaneously unveiling the distinct roles of confined sulfur nanodomains and their adjoining electron pathways in different reaction regimes.  相似文献   

18.
As a primary component in lithium–sulfur (Li–S) batteries, the separator may require a custom design in order to facilitate electrochemical stability and reversibility. Here, a custom separator with an activated carbon nanofiber (ACNF)‐filter coated onto a polypropylene membrane is presented. The entire configuration is comprised of the ACNF filter arranged adjacent to the sulfur cathode so that it can filter out the freely migrating polysulfides and suppress the severe polysulfide diffusion. Four differently optimized ACNF‐filter‐coated separators have been developed with tunable micropores as an investigation into the electrochemical and engineering design parameters of functionalized separators. The optimized parameters that are verified by electrochemical and microstructural analyses require the coated ACNF filter to possess the following: (i) a porous architecture with abundant micropores, (ii) small micropore sizes, and (iii) high electrical conductivity and effective electrolyte immersion. It is found that the ACNF20‐filter‐coated separator demonstrates an overall superior boost in the electrochemical utilization (discharge capacity: 1270 mA h g?1) and polysulfide retention (capacity fade rate: 0.13% cycle?1 after 200 cycles). These results show that the modified thin‐film‐coating technique is a viable approach to designing ultratough ACNF‐filter‐coated separators with outstanding mechanical strength and flexibility as an advanced component in Li–S cells.  相似文献   

19.
Li2S is a fully lithiated sulfur‐based cathode with a high theoretical capacity of 1166 mAh g?1 that can be coupled with lithium‐free anodes to develop high‐energy‐density lithium–sulfur batteries. Although various approaches have been pursued to obtain a high‐performance Li2S cathode, there are still formidable challenges with it (e.g., low conductivity, high overpotential, and irreversible polysulfide diffusion) and associated fabrication processes (e.g., insufficient Li2S, excess electrolyte, and low reversible capacity), which have prevented the realization of high electrochemical utilization and stability. Here, a new cathode design composed of a homogeneous Li2S‐TiS2‐electrolyte composite that is prepared by a simple two‐step dry/wet‐mixing process is demonstrated, allowing the liquid electrolyte to wet the powder mixture consisting of insulating Li2S and conductive TiS2. The close‐contact, three‐phase boundary of this system improves the Li2S‐activation efficiency and provides fast redox‐reaction kinetics, enabling the Li2S‐TiS2‐electrolyte cathode to attain stable cyclability at C/7 to C/3 rates, superior long‐term cyclability over 500 cycles, and promising high‐rate performance up to 1C rate. More importantly, this improved performance results from a cell design attaining a high Li2S loading of 6 mg cm?2, a high Li2S content of 75 wt%, and a low electrolyte/Li2S ratio of 6.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号