共查询到20条相似文献,搜索用时 13 毫秒
1.
Shuyan Shao Jian Liu Giuseppe Portale Hong‐Hua Fang Graeme R. Blake Gert H. ten Brink L. Jan Anton Koster Maria Antonietta Loi 《Liver Transplantation》2018,8(4)
The low power conversion efficiency (PCE) of tin‐based hybrid perovskite solar cells (HPSCs) is mainly attributed to the high background carrier density due to a high density of intrinsic defects such as Sn vacancies and oxidized species (Sn4+) that characterize Sn‐based HPSCs. Herein, this study reports on the successful reduction of the background carrier density by more than one order of magnitude by depositing near‐single‐crystalline formamidinium tin iodide (FASnI3) films with the orthorhombic a‐axis in the out‐of‐plane direction. Using these highly crystalline films, obtained by mixing a very small amount (0.08 m ) of layered (2D) Sn perovskite with 0.92 m (3D) FASnI3, for the first time a PCE as high as 9.0% in a planar p–i–n device structure is achieved. These devices display negligible hysteresis and light soaking, as they benefit from very low trap‐assisted recombination, low shunt losses, and more efficient charge collection. This represents a 50% improvement in PCE compared to the best reference cell based on a pure FASnI3 film using SnF2 as a reducing agent. Moreover, the 2D/3D‐based HPSCs show considerable improved stability due to the enhanced robustness of the perovskite film compared to the reference cell. 相似文献
2.
Guiying Xu Rongming Xue Weijie Chen Jingwen Zhang Moyao Zhang Haiyang Chen Chaohua Cui Hongkun Li Yaowen Li Yongfang Li 《Liver Transplantation》2018,8(12)
In p‐i‐n planar perovskite solar cells (pero‐SCs) based on methylammonium lead iodide (MAPbI3) perovskite, high‐quality MAPbI3 film, perfect interfacial band alignment and efficient charge extracting ability are critical for high photovoltaic performance. In this work, a hydrophilic fullerene derivative [6,6]‐phenyl‐C61‐butyric acid‐(3,4,5‐tris(2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy)phenyl)methanol ester (PCBB‐OEG) is introduced as additive in the methylammonium iodide precursor solution in the preparation of MAPbI3 perovskite film by two‐step sequential deposition method, and obtained a top‐down gradient distribution with an ultrathin top layer of PCBB‐OEG. Meanwhile, a high‐quality perovskite film with high crystallinity, less trap‐states, and dense‐grained uniform morphology can well grow on both hydrophilic (poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonic acid)) and hydrophobic (polytriarylamine, PTAA) hole transport layers. When the PCBB‐OEG‐containing perovskite film (pero‐0.1) is prepared in a p‐i‐n planar pero‐SC with the configuration of ITO/PTAA/pero‐0.1/[6,6]‐phenyl‐C61‐butyric acid methyl ester/Al, the device delivers a promising power conversion efficiency (PCE) of 20.2% without hysteresis, which is one of the few PCE over 20% for the p‐i‐n planar pero‐SCs. Importantly, the pero‐0.1‐based device shows an excellent stability that can retain 98.4% of its initial PCE after being exposed for 300 h under ambient atmosphere with a high humidity, and the flexible pero‐SCs based on pero‐0.1 also demonstrate a promising PCE of 18.1%. 相似文献
3.
Boer Tan Sonia R. Raga Anthony S. R. Chesman Sebastian O. Fürer Fei Zheng David P. McMeekin Liangcong Jiang Wenxin Mao Xiongfeng Lin Xiaoming Wen Jianfeng Lu Yi‐Bing Cheng Udo Bach 《Liver Transplantation》2019,9(32)
To date, the most efficient perovskite solar cells (PSCs) employ an n–i–p device architecture that uses a 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenyl‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) hole‐transporting material (HTM), which achieves optimum conductivity with the addition of lithium bis(trifluoromethane)sulfonimide (LiTFSI) and air exposure. However, this additive along with its oxidation process leads to poor reproducibility and is detrimental to stability. Herein, a dicationic salt spiro‐OMeTAD(TFSI)2, is employed as an effective p‐dopant to achieve power conversion efficiencies of 19.3% and 18.3% (apertures of 0.16 and 1.00 cm2) with excellent reproducibility in the absence of LiTFSI and air exposure. As far as it is known, these are the highest‐performing n–i–p PSCs without LiTFSI or air exposure. Comprehensive analysis demonstrates that precise control of the proportion of [spiro‐OMeTAD]+ directly provides high conductivity in HTM films with low series resistance, fast hole extraction, and lower interfacial charge recombination. Moreover, the spiro‐OMeTAD(TFSI)2‐doped devices show improved stability, benefitting from well‐retained HTM morphology without forming aggregates or voids when tested under an ambient atmosphere. A facile approach is presented to fabricate highly efficient PSCs by replacing LiTFSI with spiro‐OMeTAD(TFSI)2. Furthermore, this study provides an insight into the relationship between device performance and the HTM doping level. 相似文献
4.
Enhanced Efficiency of Hot‐Cast Large‐Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation 下载免费PDF全文
Hsueh‐Chung Liao Peijun Guo Che‐Pu Hsu Ma Lin Binghao Wang Li Zeng Wei Huang Chan Myae Myae Soe Wei‐Fang Su Michael J. Bedzyk Michael R. Wasielewski Antonio Facchetti Robert P. H. Chang Mercouri G. Kanatzidis Tobin J. Marks 《Liver Transplantation》2017,7(8)
Organic–inorganic perovskite photovoltaics are an emerging solar technology. Developing materials and processing techniques that can be implemented in large‐scale manufacturing is extremely important for realizing the potential of commercialization. Here we report a hot‐casting process with controlled Cl? incorporation which enables high stability and high power‐conversion‐efficiencies (PCEs) of 18.2% for small area (0.09 cm2) and 15.4% for large‐area (≈1 cm2) single solar cells. The enhanced performance versus tri‐iodide perovskites can be ascribed to longer carrier diffusion lengths, improved uniformity of the perovskite film morphology, favorable perovskite crystallite orientation, a halide concentration gradient in the perovskite film, and reduced recombination by introducing Cl?. Additionally, Cl? improves the device stability by passivating the reaction between I? and the silver electrode. High‐quality thin films deployed over a large‐area 5 cm × 5 cm eight‐cell module have been fabricated and exhibit an active‐area PCE of 12.0%. The feasibility of material and processing strategies in industrial large‐scale coating techniques is then shown by demonstrating a “dip‐coating” process which shows promise for large throughput production of perovskite solar modules. 相似文献
5.
6.
Orientation Regulation of Phenylethylammonium Cation Based 2D Perovskite Solar Cell with Efficiency Higher Than 11% 下载免费PDF全文
Xinqian Zhang Gang Wu Weifei Fu Minchao Qin Weitao Yang Jielin Yan Zhongqiang Zhang Xinhui Lu Hongzheng Chen 《Liver Transplantation》2018,8(14)
Increasing the power conversion efficiency (PCE) of the two‐dimensional (2D) perovskite‐based solar cells (PVSCs) is really a challenge. Vertical orientation of the 2D perovskite film is an efficient strategy to elevate the PCE. In this work, vertically orientated highly crystalline 2D (PEA)2(MA)n–1PbnI3n+1 (PEA= phenylethylammonium, MA = methylammonium, n = 3, 4, 5) films are fabricated with the assistance of an ammonium thiocyanate (NH4SCN) additive by a one‐step spin‐coating method. Planar‐structured PVSCs with the device structure of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/(PEA)2(MA)n–1PbnI3n+1/[6,6]‐phenyl‐C61‐butyric acid methyl ester/bahocuproine/Ag are fabricated. The PCE of the PVSCs is boosted from the original 0.56% (without NH4SCN) to 11.01% with the optimized NH4SCN addition at n = 5, which is among the highest PCE values for the low‐n (n < 10) 2D perovskite‐based PVSCs. The improved performance is attributed to the vertically orientated highly crystalline 2D perovskite thin films as well as the balanced electron/hole transportation. The humidity stability of this oriented 2D perovskite thin film is also confirmed by the almost unchanged X‐ray diffraction patterns after 28 d exposed to the moisture in a humidity‐controlled cabinet (Hr = 55 ± 5%). The unsealed device retains 78.5% of its original PCE after 160 h storage in air atmosphere with humidity of 55 ± 5%. The results provide an effective approach toward a highly efficient and stable PVSC for future commercialization. 相似文献
7.
Molecularly Engineered Phthalocyanines as Hole‐Transporting Materials in Perovskite Solar Cells Reaching Power Conversion Efficiency of 17.5% 下载免费PDF全文
Kyung Teak Cho Olga Trukhina Cristina Roldán‐Carmona Mine Ince Paul Gratia Giulia Grancini Peng Gao Tomasz Marszalek Wojciech Pisula Paidi Y. Reddy Tomás Torres Mohammad Khaja Nazeeruddin 《Liver Transplantation》2017,7(7)
Easily accessible tetra‐5‐hexylthiophene‐, tetra‐5‐hexyl‐2,2′‐bisthiophene‐substituted zinc phthalocyanines (ZnPcs) and tetra‐tert ‐butyl ZnPc are employed as hole‐transporting materials in mixed‐ion perovskite [HC(NH2)2]0.85(CH3NH3)0.15Pb(I0.85Br0.15)3 solar cells, reaching the highest power conversion efficiency (PCE) so far for phthalocyanines. Results confirm that the photovoltaic performance is strongly influenced by both, the individual optoelectronic properties of ZnPcs and the aggregation of these tetrapyrrolic semiconductors in the solid thin film. The optimized devices exhibit PCE of 15.5% when using tetra‐5‐hexyl‐2,2′‐bisthiophene substituted ZnPcs, 13.3% for tetra‐tert ‐butyl ZnPc, and a record 17.5% for tetra‐5‐hexylthiophene‐based analogue under standard global 100 mW cm?2 AM 1.5G illumination. These results boost up the potential of solution‐processed ZnPc derivatives as stable and economic hole‐transport materials for large‐scale applications, opening new frontiers toward a realistic, efficient, and inexpensive energy production. 相似文献
8.
9.
Organic‐inorganic halide perovskite materials have become a shining star in the photovoltaic field due to their unique properties, such as high absorption coefficient, optimal bandgap, and high defect tolerance, which also lead to the breathtaking increase in power conversion efficiency from 3.8% to over 22% in just seven years. Although the highest efficiency was obtained from the TiO2 mesoporous structure, there are increasing studies focusing on the planar structure device due to its processibility for large‐scale production. In particular, the planar p‐i‐n structure has attracted increasing attention on account of its tremendous advantages in, among other things, eliminating hysteresis alongside a competitive certified efficiency of over 20%. Crucial for the device performance enhancement has been the interface engineering for the past few years, especially for such planar p‐i‐n devices. The interface engineering aims to optimize device properties, such as charge transfer, defect passivation, band alignment, etc. Herein, recent progress on the interface engineering of planar p‐i‐n structure devices is reviewed. This review is mainly focused on the interface design between each layer in p‐i‐n structure devices, as well as grain boundaries, which are the interfaces between polycrystalline perovskite domains. Promising research directions are also suggested for further improvements. 相似文献
10.
Stable Inverted Planar Perovskite Solar Cells with Low‐Temperature‐Processed Hole‐Transport Bilayer 下载免费PDF全文
Zhongmin Zhou Xing Li Molang Cai Fengxian Xie Yongzhen Wu Zhang Lan Xudong Yang Yinghuai Qiang Ashraful Islam Liyuan Han 《Liver Transplantation》2017,7(22)
Low‐temperature‐processed perovskite solar cells (PSCs), which can be fabricated on rigid or flexible substrates, are attracting increasing attention because they have a wide range of potential applications. In this study, the stability of reduced graphene oxide and the ability of a poly(triarylamine) underlayer to improve the quality of overlying perovskite films to construct hole‐transport bilayer by means of a low‐temperature method are taken advantage of. The bilayer is used in both flexible and rigid inverted planar PSCs with the following configuration: substrate/indium tin oxide/reduced graphene oxide/polytriarylamine/CH3NH3PbI3/PCBM/bathocuproine/Ag (PCBM = [6,6]‐phenyl‐C61‐butyric acid methyl ester). The flexible and rigid PSCs show power conversion efficiencies of 15.7 and 17.2%, respectively, for the aperture area of 1.02 cm2. Moreover, the PSC based the bilayer shows outstanding light‐soaking stability, retaining ≈90% of its original efficiency after continuous illumination for 500 h at 100 mW cm?2. 相似文献
11.
Solvent Engineering Boosts the Efficiency of Paintable Carbon‐Based Perovskite Solar Cells to Beyond 14% 下载免费PDF全文
Haining Chen Zhanhua Wei Hexiang He Xiaoli Zheng Kam Sing Wong Shihe Yang 《Liver Transplantation》2016,6(8)
Carbon‐based hole transport material (HTM)‐free perovskite solar cells (PSCs) have shown much promise for practical applications because of their high stability and low cost. However, the efficiencies of this kind of PSCs are still relatively low, especially for the simplest paintable carbon‐based PSCs, in comparison with the organic HTM‐based PSCs. This can be imputed to the perovskite deposition methods that are not very suitable for this kind of devices. A solvent engineering strategy based on two‐step sequential method is exploited to prepare a high‐quality perovskite layer for the paintable carbon‐based PSCs in which the solvent for CH3NH3I (MAI) solution at the second step is changed from isopropanol (IPA) to a mixed solvent of IPA/Cyclohexane (CYHEX). This mixed solvent not only accelerates the conversion of PbI2 to CH3NH3PbI3 but also suppresses the Ostwald ripening process resulting in a high‐quality perovskite layer, e.g., pure phase, even surface, and compact capping layer. The paintable carbon‐based PSCs fabricated from IPA/CYHEX solvent exhibits a considerable enhancement in photovoltaic performance and performance reproducibility in comparison with that from pure IPA, especially on fill factor (FF), owing mainly to the better contact of perovskite/carbon interface, lower trap density in perovskite, higher light absorption ability, and faster charge transport of perovskite layer. As a result, the highest power conversion efficiency (PCE) of 14.38% is obtained, which is a record value for carbon‐based HTM‐free PSCs. Furthermore, a PCE of as high as 10% is achieved for the large area device (1 cm2), also the highest of its kind. 相似文献
12.
To solve critical issues related to device stability and performance of perovskite solar cells (PSCs), FA0.026MA0.974PbI3?yCly‐Cu:NiO (formamidinium methylammonium (FAMA)‐perovskite‐Cu:NiO) and Al2O3/Cu:NiO composites are developed and utilized for fabrication of highly stable and efficient PSCs through fully‐ambient‐air processes. The FAMA‐perovskite‐Cu:NiO composite crystals prepared without using any antisolvents not only improve the perovskite film quality with large‐size crystals and less grain boundaries but also tailor optical and electronic properties and suppress charge recombination with reduction of trap density. A champion device based on the composites as light absorber and Al2O3/Cu:NiO interfacial layer between electron transport layer and active layer yields power conversion efficiency (PCE) of 20.67% with VOC of 1.047 V, JSC of 24.51 mA cm?2, and fill factor of 80.54%. More importantly, such composite‐based PSCs without encapsulation show significant enhancement in long‐term air‐stability, thermal‐ and photostability with retaining 97% of PCE over 240 d under ambient conditions (25–30 °C, 45–55% humidity). 相似文献
13.
14.
15.
Amino‐Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for High‐Performance Planar‐Heterojunction Perovskite Solar Cells 下载免费PDF全文
Chen Sun Zhihong Wu Hin‐Lap Yip Hua Zhang Xiao‐Fang Jiang Qifan Xue Zhicheng Hu Zhanhao Hu Yan Shen Mingkui Wang Fei Huang Yong Cao 《Liver Transplantation》2016,6(5)
An amino‐functionalized copolymer with a conjugated backbone composed of fluorene, naphthalene diimide, and thiophene spacers (PFN‐2TNDI) is introduced as an alternative electron transport layer (ETL) to replace the commonly used [6,6]‐Phenyl‐C61‐butyric acid methyl ester (PCBM) in the p–i–n planar‐heterojunction organometal trihalide perovskite solar cells. A combination of characterizations including photoluminescence (PL), time‐resolved PL decay, Kelvin probe measurement, and impedance spectroscopy is used to study the interfacial effects induced by the new ETL. It is found that the amines on the polymer side chains not only can passivate the surface traps of perovskite to improve the electron extraction properties, they also can reduce the work function of the metal cathode by forming desired interfacial dipoles. With these dual functionalities, the resulted solar cells outperform those based on PCBM with power conversion efficiency (PCE) increased from 12.9% to 16.7% based on PFN‐2TNDI. In addition to the performance enhancement, it is also found that a wide range of thicknesses of the new ETL can be applied to produce high PCE devices owing to the good electron transport property of the polymer, which offers a better processing window for potential fabrication of perovskite solar cells using large‐area coating method. 相似文献
16.
Can Li Ruiman Ma Xinjun He Tingbin Yang Ziming Zhou Shuo Yang Yongye Liang Xiao Wei Sun Jiannong Wang Yanfa Yan Wallace C. H. Choy 《Liver Transplantation》2020,10(8)
Unlike Pb‐based perovskites, it is still a challenge for realizing the targets of high performance and stability in mixed Pb–Sn perovskite solar cells owing to grain boundary traps and chemical changes in the perovskites. In this work, proposed is the approach of in‐situ tin(II) inorganic complex antisolvent process for specifically tuning the perovskite nucleation and crystal growth process. Interestingly, uniquely formed is the quasi‐core–shell structure of Pb–Sn perovskite–tin(II) complex as well as heterojunction perovskite structure at the same time for achieving the targets. The core–shell structure of Pb–Sn perovskite crystals covered by a tin(II) complex at the grain boundaries effectively passivates the trap states and suppresses the nonradiative recombination, leading to longer carrier lifetime. Equally important, the perovskite heterostructure is intentionally formed at the perovskite top region for enhancing the carrier extraction. As a result, the mixed Pb–Sn low‐bandgap perovskite device achieves a high power conversion efficiency up to 19.03% with fill factor over 0.8, which is among the highest fill factor in high‐performance Pb–Sn perovskite solar cells. Remarkably, the device fail time under continuous light illumination is extended by over 18.5‐folds from 30 to 560 h, benefitting from the protection of the quasi‐core–shell structure. 相似文献
17.
Donor–Acceptor Type Dopant‐Free,Polymeric Hole Transport Material for Planar Perovskite Solar Cells (19.8%) 下载免费PDF全文
Organic–inorganic hybrid perovskite has led to the development of new solar cells with outstanding efficiency. In perovskite solar cells (PSCs), perovskite is sandwiched between a working electrode (fluorine‐doped tin oxide) and a counter electrode (gold, Au). In order to transport charges and block opposite charges, charge transport layers are inserted between perovskite and the electrodes. In particular, a hole transport layer is important because it generally prevents perovskite from exposure to air. Therefore, it is necessary to investigate dopant‐free and hydrophobic polymeric hole transport materials (HTMs). In this study, a novel polymeric HTM (PTEG) is synthesized by controlling the solubility using a tetraethylene glycol group. The planar‐PSC employing PTEG exhibits an efficiency of 19.8% without any dopants, which corresponds to the highest value reported to date. This study offers a fundamental strategy for designing and synthesizing various polymeric HTMs. 相似文献
18.
Nowadays, solvent additives are widely used in organic solar cells (OSCs) to tune the nano‐morphology of the active blend film and enhance the device performance. With their help, power conversion efficiencies (PCEs) of OSCs have recently stepped over 10%. However, residual additive in the device can induce undesirable morphological change and also accelerate photo‐oxidation degradation of the active blend film. Thereby, their involvements are actually unfavorable for practical applications. Here, a donor material PThBDTP is employed, and PThBDTP:PC71BM based OSCs are fabricated. A PCE of over 10% is achieved without using any additives and film post‐treatments. The device displays a high open‐circuit voltage of 0.977 V, a large short‐circuit current density of 13.49 mA cm‐2, and a high fill factor of 76.3%. These results represent an important step towards developing high‐efficiency additive‐free OSCs. 相似文献