共查询到20条相似文献,搜索用时 15 毫秒
1.
Shan Xiong Xingfeng He Aijie Han Zhantao Liu Zhensong Ren Brian McElhenny Adelaide M. Nolan Shuo Chen Yifei Mo Hailong Chen 《Liver Transplantation》2019,9(22)
The development of all‐solid‐state Li‐ion batteries requires solid electrolyte materials with many desired properties, such as ionic conductivity, chemical and electrochemical stability, and mechanical durability. Computation‐guided materials design techniques are advantageous in designing and identifying new solid electrolytes that can simultaneously meet these requirements. In this joint computational and experimental study, a new family of fast lithium ion conductors, namely, LiTaSiO5 with sphene structure, are successfully identified, synthesized, and demonstrated using a novel computational design strategy. First‐principles computation predicts that Zr‐doped LiTaSiO5 sphene materials have fast Li diffusion, good phase stability, and poor electronic conductivity, which are ideal for solid electrolytes. Experiments confirm that Zr‐doped LiTaSiO5 sphene structure indeed exhibits encouraging ionic conductivity. The lithium diffusion mechanisms in this material are also investigated, indicating the sphene materials are 3D conductors with facile 1D diffusion along the [101] direction and additional cross‐channel migration. This study demonstrates a novel design strategy of activating fast Li ionic diffusion in lithium sphenes, a new materials family of superionic conductors. 相似文献
2.
Kern Ho Park Qiang Bai Dong Hyeon Kim Dae Yang Oh Yizhou Zhu Yifei Mo Yoon Seok Jung 《Liver Transplantation》2018,8(18)
Owing to the ever‐increasing safety concerns about conventional lithium‐ion batteries, whose applications have expanded to include electric vehicles and grid‐scale energy storage, batteries with solidified electrolytes that utilize nonflammable inorganic materials are attracting considerable attention. In particular, owing to their superionic conductivities (as high as ≈10?2 S cm?1) and deformability, sulfide materials as the solid electrolytes (SEs) are considered the enabling material for high‐energy bulk‐type all‐solid‐state batteries. Herein the authors provide a brief review on recent progress in sulfide Li‐ and Na‐ion SEs for all‐solid‐state batteries. After the basic principles in designing SEs are considered, the experimental exploration of multicomponent systems and ab initio calculations that accelerate the search for stronger candidates are discussed. Next, other issues and challenges that are critical for practical applications, such as instability in air, electrochemical stability, and compatibility with active materials, are discussed. Then, an emerging progress in liquid‐phase synthesis and solution process of SEs and its relevant prospects in ensuring intimate ionic contacts and fabricating sheet‐type electrodes is highlighted. Finally, an outlook on the future research directions for all‐solid‐state batteries employing sulfide superionic conductors is provided. 相似文献
3.
Jonathan Lau Ryan H. DeBlock Danielle M. Butts David S. Ashby Christopher S. Choi Bruce S. Dunn 《Liver Transplantation》2018,8(27)
The use of solid electrolytes is a promising direction to improve the energy density of lithium‐ion batteries. However, the low ionic conductivity of many solid electrolytes currently hinders the performance of solid‐state batteries. Sulfide solid electrolytes can be processed in a number of forms (glass, glass‐ceramic, and crystalline) and have a wide range of available chemistries. Crystalline sulfide materials demonstrate ionic conductivity on par with those of liquid electrolytes through the utilization of near ideal conduction pathways. Low‐temperature processing is also possible for these materials due to their favorable mechanical properties. The main drawback of sulfide solid electrolytes remains their electrochemical stability, but this can be addressed through compositional tuning or the use of artificial solid electrolyte interphase (SEI). Implementation of sulfide solid electrolytes, with proper treatment for stability, can lead to substantial improvements in solid‐state battery performance leading to significant advancement in electric vehicle technology. 相似文献
4.
Ulderico Ulissi Seitaro Ito Seyed Milad Hosseini Alberto Varzi Yuichi Aihara Stefano Passerini 《Liver Transplantation》2018,8(26)
As the theoretical limit of intercalation material‐based lithium‐ion batteries is approached, alternative chemistries based on conversion reactions are presently considered. The conversion of sulfur is particularly appealing as it is associated with a theoretical gravimetric energy density up to 2510 Wh kg?1. In this paper, three different carbon‐iron disulfide‐sulfur (C‐FeS2‐S) composites are proposed as alternative positive electrode materials for all‐solid‐state lithium‐sulfur batteries. These are synthesized through a facile, low‐cost, single‐step ball‐milling procedure. It is found that the crystalline structure (evaluated by X‐ray diffraction) and the morphology of the composites (evaluated by scanning electron microscopy) are greatly influenced by the FeS2:S ratio. Li/LiI‐Li3PS4/C‐FeS2‐S solid‐state cells are tested under galvanostatic conditions, while differential capacity plots are used to discuss the peculiar electrochemical features of these novel materials. These cells deliver capacities as high as 1200 mAh g(FeS2+S)?1 at the intermediate loading of 1 mg cm?2 (1.2 mAh cm?2), and up to 3.55 mAh cm?2 for active material loadings as high as 5 mg cm?2 at 20 °C. Such an excellent performance, rarely reported for (sulfur/metal sulfide)‐based, all solid‐state cells, makes these composites highly promising for real application where high positive electrode loadings are required. 相似文献
5.
Yigang Yan Ruben‐Simon Kühnel Arndt Remhof Léo Duchêne Eduardo Cuervo Reyes Daniel Rentsch Zbigniew Łodziana Corsin Battaglia 《Liver Transplantation》2017,7(19)
High ionic conductivity of up to 6.4 × 10?3 S cm?1 near room temperature (40 °C) in lithium amide‐borohydrides is reported, comparable to values of liquid organic electrolytes commonly employed in lithium‐ion batteries. Density functional theory is applied coupled with X‐ray diffraction, calorimetry, and nuclear magnetic resonance experiments to shed light on the conduction mechanism. A Li4Ti5O12 half‐cell battery incorporating the lithium amide‐borohydride electrolyte exhibits good rate performance up to 3.5 mA cm?2 (5 C) and stable cycling over 400 cycles at 1 C at 40 °C, indicating high bulk and interfacial stability. The results demonstrate the potential of lithium amide‐borohydrides as solid‐state electrolytes for high‐power lithium‐ion batteries. 相似文献
6.
7.
The development of all‐solid‐state lithium–sulfur batteries is hindered by the poor interfacial properties at solid electrolyte (SE)/electrode interfaces. The interface is modified by employing the highly concentrated solvate electrolyte, (MeCN)2?LiTFSI:TTE, as an interlayer material at the electrolyte/electrode interfaces. The incorporation of an interlayer significantly improves the cycling performance of solid‐state Li2S batteries compared to the bare counterpart, exhibiting a specific capacity of 760 mAh g?1 at cycle 100 (330 mAh g?1 for the bare cell). Electrochemical impedance spectroscopy shows that the interfacial resistance of the interlayer‐modified cell gradually decreases as a function of cycle number, while the impedance of the bare cell remains almost constant. Cross‐section scanning electron microscopy (SEM)/ energy dispersive X‐ray spectroscopy (EDS) measurements on the interlayer‐modified cell confirm the permeation of solvate into the cathode and the SE with electrochemical cycling, which is related to the decrease in cell impedance. In order to mimic the full permeation of the solvate across the entire cell, the solvate is directly mixed with the SE to form a “solvSEM” electrolyte. The hybrid Li2S cell using a solvSEM electrolyte exhibits superior cycling performance compared to the solid‐state cells, in terms of Li2S loading, Li2S utilization, and cycling stability. The improved performance is due to the favorable ionic contact at the battery interfaces. 相似文献
8.
Thomas A. Yersak H. Alex Macpherson Seul Cham Kim Viet‐Duc Le Chan Soon Kang Seoung‐Bum Son Yong‐Hyun Kim James E. Trevey Kyu Hwan Oh Conrad Stoldt Se‐Hee Lee 《Liver Transplantation》2013,3(1):120-127
We report that a solid‐state battery architecture enables the reversible, four electron storage of fully utilized solvothermally synthesized cubic‐FeS2 (pyrite). With a sulfide based glass electrolyte we successfully confine electro‐active species and permit the safe use of a lithium metal anode. These FeS2/Li solid‐state cells deliver a theoretical specific capacity of 894 mAh g?1 at 60 °C. We find that nanoparticles of orthorhombic‐FeS2 (marcasite) are generated upon recharge at 30–60 °C which explains a coincident change in rate kinetics. 相似文献
9.
Yuepeng Pang Xitong Wang Xinxin Shi Fen Xu Lixian Sun Junhe Yang Shiyou Zheng 《Liver Transplantation》2020,10(12)
Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li3AlH6‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH4 and Li with the help of fast electron and Li‐ion conductors (C and P63mc LiBH4). This nanocomposite consists of dispersive Al nanograins and an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g?1), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g?1 at 1 A g?1) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li3AlH6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior. 相似文献
10.
11.
Joonam Park Kyu Tae Kim Dae Yang Oh Dahee Jin Dohwan Kim Yoon Seok Jung Yong Min Lee 《Liver Transplantation》2020,10(35)
The digital twin technique has been broadly utilized to efficiently and effectively predict the performance and problems associated with real objects via a virtual replica. However, the digitalization of twin electrochemical systems has not been achieved thus far, owing to the large amount of required calculations of numerous and complex differential equations in multiple dimensions. Nevertheless, with the help of continuous progress in hardware and software technologies, the fabrication of a digital twin‐driven electrochemical system and its effective utilization have become a possibility. Herein, a digital twin‐driven all‐solid‐state battery with a solid sulfide electrolyte is built based on a voxel‐based microstructure. Its validity is verified using experimental data, such as effective electronic/ionic conductivities and electrochemical performance, for LiNi0.70Co0.15Mn0.15O2 composite electrodes employing Li6PS5Cl. The fundamental performance of the all‐solid‐state battery is scrutinized by analyzing simulated physical and electrochemical behaviors in terms of mass transport and interfacial electrochemical reaction kinetics. The digital twin model herein reveals valuable but experimentally inaccessible time‐ and space‐resolved information including dead particles, specific contact area, and charge distribution in the 3D domain. Thus, this new computational model is bound to rapidly improve the all‐solid‐state battery technology by saving the research resources and providing valuable insights. 相似文献
12.
Afriyanti Sumboja Mechthild Lübke Yong Wang Tao An Yun Zong Zhaolin Liu 《Liver Transplantation》2017,7(20)
Pliable, safe, and inexpensive energy storage devices are in demand to power modern flexible electronics. In this work, a foldable battery based on a solid‐state and rechargeable Zn‐air battery is introduced. The air cathode is prepared by coating graphene flakes on pretreated carbon cloth to form a dense, interconnected, and conducting carbon network. Manganese oxide hierarchical nanostructures are subsequently grown on the large surface area carbon network, leading to high loading of active catalyst per unit volume while maintaining the mechanical and electrical integrity of the air cathode. Solid‐state and rechargeable Zn‐air battery with such air cathode exhibits similar polarization curve and resistance at its flat and folded states. The folded battery is able to deliver a power density as high as ≈32 mW cm?2 and good cycling stability of up to 110 cycles. In addition, the flat battery shows similar discharge/charge curve and stable cycling performance after 100 times of repeated folding and unfolding, indicating its high mechanical robustness. 相似文献
13.
Zhizhen Zhang Qinghua Zhang Jinan Shi Yong S. Chu Xiqian Yu Kaiqi Xu Mingyuan Ge Hanfei Yan Wenjun Li Lin Gu Yong‐Sheng Hu Hong Li Xiao‐Qing Yang Liquan Chen Xuejie Huang 《Liver Transplantation》2017,7(4)
Replacing organic liquid electrolyte with inorganic solid electrolytes (SE) can potentially address the inherent safety problems in conventional rechargeable batteries. However, solid‐state batteries (SSBs) have been plagued by the relatively low ionic conductivity of SEs and large charge‐transfer resistance between electrode and SE. Here, a new design strategy is reported for improving the ionic conductivity of SE by self‐forming a composite material. An optimized Na+ ion conducting composite electrolyte derived from the Na1+ n Zr2Si n P3? n O12 NASICON (Na Super Ionic Conductor) structure is successfully synthesized, yielding ultrahigh ionic conductivity of 3.4 mS cm?1 at 25 °C and 14 mS cm?1 at 80 °C. On the other hand, in order to enhance the charge‐transfer rate at the electrode/electrolyte interface, an interface modification strategy is demonstrated by utilization of a small amount of nonflammable and nonvolatile ionic liquid (IL) at the cathode side in SSBs. The IL acts as a wetting agent, enabling a favorable interface kinetic in SSBs. The Na3V2(PO4)3/IL/SE/Na SSB exhibits excellent cycle performance and rate capability. A specific capacity of ≈90 mA h g?1 is maintained after 10 000 cycles without capacity decay under 10 C rate at room temperature. This provides a new perspective to design fast ion conductors and fabricate long life SSBs. 相似文献
14.
Johannes Betz Georg Bieker Paul Meister Tobias Placke Martin Winter Richard Schmuch 《Liver Transplantation》2019,9(6)
Electrochemical energy storage at a large scale poses one of the main technological challenges of this century. The scientific community in academia and industry worldwide intensively is exploring various alternative rechargeable battery concepts beside state‐of‐the‐art lithium ion batteries (LIBs), for example, all‐solid‐state batteries, lithium/sulfur batteries, magnesium/sulfur batteries or dual‐ion batteries that could outperform LIBs in different aspects. Often, these concepts also promise very high theoretical energies per mass or volume. However, as theoretical values exclude numerous relevant parameters, they do not translate directly into practically achievable energy values: The gaps between practical capacities and voltages compared to the theoretical values differ for each system. In order to provide high transparency and to illustrate which cell components are most important in the limitation of the practical energy values, in this study, the specific energies and energy densities are calculated in six subsequent steps—from the theoretical energy values of the active materials alone to the practical energy values in an 18650 cylindrical cell. By providing a tool to calculate the energy values of six different battery technologies with different assumptions made evident, this study aims for more transparency and reliability in the comparison of different cell chemistries. 相似文献
15.
The last decade has seen considerable advancements in the development of solid electrolytes for solid‐state battery applications, with particular attention being paid to sulfide superionic conductors. Importantly, the intrinsic electrochemical instability of these high‐performance separators highlights the notion that further progress in the field of solid‐state batteries is contingent on the optimization of component material interfaces in order to secure high energy and power densities, while maintaining device safety and a practical cycle life. On the cathode side, the need for a protective coating to inhibit solid electrolyte degradation is clear; however, a mechanistic understanding of the coating functionality remains unresolved, and there is still much room for improvement regarding the methodology and associated material properties. Herein, the essential requirements for a suitable coating are specified and fundamental considerations are discussed in detail. Additionally, this article will provide an overview of the various material classes, assessment protocols and practical coating methods, as well as an outlook on the development of coatings for cathode active materials in thiophosphate‐based solid‐state batteries. 相似文献
16.
Solid electrolytes have been considered as a promising approach for Li dendrite prevention because of their high mechanical strength and high Li transference number. However, recent reports indicate that Li dendrites also form in Li2S‐P2S5 based sulfide electrolytes at current densities much lower than that in the conventional liquid electrolytes. The methods of suppressing dendrite formation in sulfide electrolytes have rarely been reported because the mechanism for the “unexpected” dendrite formation is unclear, limiting the successful utilization of high‐energy Li anode with these electrolytes. Herein, the authors demonstrate that the Li dendrite formation in Li2S‐P2S5 glass can be effectively suppressed by tuning the composition of the solid electrolyte interphase (SEI) at the Li/electrolyte interface through incorporating LiI into the electrolyte. This approach introduces high ionic conductivity but electronic insulation of LiI in the SEI, and more importantly, improves the mobility of Li atoms, promoting the Li depositon at the interface and thus suppresses dendrite growth. It is shown that the critical current density is improved significantly after incorporating LiI into Li2S‐P2S5 glass, reaching 3.90 mA cm?2 at 100 °C after adding 30 mol% LiI. Stable cycling of the Li‐Li cells for 200 h is also achieved at 1.50 mA cm?2 at 100 °C. 相似文献
17.
Kavish Kaup J. David Bazak Shahrzad Hosseini Vajargah Xiaohan Wu Joern Kulisch Gillian R. Goward Linda F. Nazar 《Liver Transplantation》2020,10(8)
As potential next‐generation energy storage devices, solid‐state lithium batteries require highly functional solid state electrolytes. Recent research is primarily focused on crystalline materials, while amorphous materials offer advantages by eliminating problematic grain boundaries that can limit ion transport and trigger dendritic growth at the Li anode. However, simultaneously achieving high conductivity and stability in glasses is a challenge. New quaternary superionic lithium oxythioborate glasses are reported that exhibit high ion conductivity up to 2 mS cm?1 despite relatively high oxygen: sulfur ratios of more than 1:2, that exhibit greatly reduced H2S evolution upon exposure to air compared to Li7P3S11. These monolithic glasses are prepared from vitreous melts without ball‐milling and exhibit no discernable XRD pattern. Solid‐state NMR studies elucidate the structural entities that comprise the local glass structure which dictates fast ion conduction. Stripping/plating onto lithium metal results in very low polarization at a current density of 0.1 mA cm?2 over repeated cycling. Evaluation of the optimal glass composition as an electrolyte in an all‐solid‐state battery shows it exhibits excellent cycling stability and maintains near theoretical capacity for over 130 cycles at room temperature with Coulombic efficiency close to 99.9%, opening up new avenues of exploration for these quaternary compositions. 相似文献
18.
Hao Chen David Adekoya Luke Hencz Jun Ma Su Chen Cheng Yan Huijun Zhao Guanglei Cui Shanqing Zhang 《Liver Transplantation》2020,10(21)
Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐solid‐state composite electrolyte is synthesized based on oxygen‐vacancy‐rich Ca‐doped CeO2 (Ca–CeO2) nanotube, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and poly(ethylene oxide) (PEO), namely Ca–CeO2/LiTFSI/PEO. Ca–CeO2 nanotubes play a key role in enhancing the ionic conductivity and mechanical strength while the PEO offers flexibility and assures the stable seamless contact between the solid electrolyte and the electrodes in ASSBs. The as‐prepared electrolyte exhibits high ionic conductivity of 1.3 × 10?4 S cm?1 at 60 °C, a high lithium ion transference number of 0.453, and high‐voltage stability. More importantly, various electrochemical characterizations and density functional theory (DFT) calculations reveal that Ca–CeO2 helps dissociate LiTFSI, produce free Li ions, and therefore enhance ionic conductivity. The ASSBs based on the as‐prepared Ca–CeO2/LiTFSI/PEO composite electrolyte deliver high‐rate capability and high‐voltage stability. 相似文献
19.
Puiki Leung Junfu Bu Pablo Quijano Velasco Matthew R. Roberts Nicole Grobert Patrick S. Grant 《Liver Transplantation》2019,9(39)
A symmetric solid‐state battery based on organic porous electrodes is fabricated using scalable spray‐printing. The active electrode material is based on a textile dye (disperse blue 134 anthraquinone) and is capable of forming divalent cations and anions in oxidation and reduction processes. The resulting molecule can be used in both negative and positive electrode reactions. After spray printing an inter‐connected pore honeycomb electrode, a solid‐state electrolyte (σLi: × 10?4 S cm?1) based on a polymeric ionic liquid is spray‐printed as a second layer and infiltrated through the porous electrodes. A symmetric all‐organic battery is then formed with the addition of another identical set of electrode and electrolyte layers. Both density functional theory calculations and charge‐discharge profiles show that the potentials for the negative and positive electrode reactions are amongst the lowest (≈2.0 V vs Li) and the highest (≈3.5 V vs Li), respectively, for quinone‐type molecules. Over the C‐rate range 0.2 to 5 C, the battery has a discharge cell voltage of more than 1 V even up to 250 charge‐discharge cycles and capacities are in the range 50–80 mA h g?1 at 0.5 C. 相似文献
20.
Interfacial reactions between ceramic‐sulfide solid‐electrolytes and common electrodes have remained a major impediment to the development of solid‐state lithium‐ion batteries. In practice, this means that ceramic‐sulfide batteries require a suitable coating material to isolate the electrolyte from the electrode materials. In this work, the interfacial stability of Li10SiP2S12 with over 67 000 materials is computationally evaluated. Over 2000 materials that are predicted to form stable interfaces in the cathode voltage range and over 1000 materials for the anode range are reported on and cataloged. LiCoO2 is chosen as an example cathode material to identify coating compounds that are stable with both Li10SiP2S12 and a common cathode. The correlation between elemental composition and multiple instability metrics (e.g., chemical/electrochemical) is analyzed, revealing key trends in, amongst others, the role of anion selection. A new binary‐search algorithm is introduced for evaluating the pseudo‐phase with improved speed and accuracy. Computational challenges posed by high‐throughput interfacial phase‐diagram calculations are highlighted as well as pragmatic computational methods to make such calculations routinely feasible. In addition to the over 3000 materials cataloged, representative materials from the anionic classes of oxides, fluorides, and sulfides are chosen to experimentally demonstrate chemical stability when in contact with Li10SiP2S12. 相似文献