首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bulk heterojunction (BHJ) photovoltaic devices made of PCDTBT (poly[N‐9′‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)]) and PC70BM ([6,6]‐phenyl‐C70‐butyric acid methyl ester) are among the most efficient and stable devices studied so far. However, during a short regime called “burn‐in”, a significant decrease of power conversion efficiency was observed. A study of the photochemical mechanisms involved in the PCDTBT:PCBM active layer exposed to light in encapsulated systems is presented. It is found that the photochemical reactions resulting from the absorption of light by PCDTBT involve crosslinking between the 2,7 carbazole unit of PCDTBT and the fullerene unit of PCBM. Those reactions stabilize the BHJ by avoiding the formation of microsized PCBM crystals known to cause failure of BHJ solar cells. Using classical electron paramagnetic resonance spectroscopy (EPR) (without illumination), paramagnetic defects along the polymer chains have been detected. The kinetics of defects intensity show a burn‐in trend. The evolution of their relaxation times upon aging is in good agreement with a structural change (crosslinking) of the BHJ observed from the nanomechanical properties. Finally, light‐induced electron paramagnetic resonance (LEPR) measurements performed on aged samples revealed that electron transfer is not significantly affected upon aging, confirming thus the stabilization of the BHJ in solar cell operating conditions.  相似文献   

2.
2D materials are of particular interest in light‐to‐heat conversion, yet challenges remain in developing a facile method to suppress their light reflection. Herein, inspired by the black scales of Bitis rhinoceros, a generalized approach via sequential thermal actuations to construct biomimetic 2D‐material nanocoatings, including Ti3C2Tx MXene, reduced graphene oxide (rGO), and molybdenum disulfide (MoS2) is designed. The hierarchical MXene nanocoatings result in broadband light absorption (up to 93.2%), theoretically validated by optical modeling and simulations, and realize improved light‐to‐heat performance (equilibrium temperature of 65.4 °C under one‐sun illumination). With efficient light‐to‐heat conversion, the bioinspired MXene nanocoatings are next incorporated into solar steam‐generation devices and stretchable solar/electric dual‐heaters. The MXene steam‐generation devices require much lower solar‐thermal material loading (0.32 mg cm?2) and still guarantee high steam‐generation performance (1.33 kg m?2 h?1) compared with other state‐of‐the‐art devices. Additionally, the mechanically deformed MXene structures enable the fabrication of stretchable and wearable heaters dual‐powered by sunlight and electricity, which are reversibly stretched and heated above 100 °C. This simple fabrication process with effective utilization of active materials promises its practical application value for multiple solar–thermal technologies.  相似文献   

3.
Solution‐processed organic BHJ solar cells based on 3,6‐bis[5‐(benzofuran‐2‐yl)thiophen‐2‐yl]‐2,5‐bis(2‐ethylhexyl)pyrrolo[3,4‐c]pyrrole‐1,4‐dione (DPP(TBFu)2) or poly(3‐hexylthiophene) blended with [6,6]‐phenyl‐C60(70) ‐butyric acid methyl ester (PC60(70) BM) behave differently under various irradiation intensities. Small molecule‐based DPP(TBFu)2:PC60 BM solar cells show up to 5.2% power conversion efficiency and a high fill factor at low light intensity. At 100 mW cm?2 illumination, the efficiency and fill factor decrease, resulting in stronger power losses. Impedance spectroscopy at various light intensities reveals that high charge recombination is the cause of the low fill factor in DPP(TBFu)2:PC60 BM.  相似文献   

4.
Recently, considerable progress is achieved in lab prototype perovskite solar cells (PSCs); however, the stability of outdoor applications of PSCs remains a challenge due to the high sensitivity of perovskite material under moist and ultraviolet (UV) light conditions. In this work, the UV photostability of PSC devices is improved by incorporating a photon downshifting layer—SrAl2O4: Eu2+, Dy3+ (SAED)—prepared using the pulsed laser deposition approach. Light‐induced deep trap states in the photoactive layer are depressed, and UV light‐induced device degradation is inhibited after the SAED modification. Optimized power conversion efficiency (PCE) of 17.8% is obtained through the enhanced light harvesting and reduced carrier recombination provided by SAED. More importantly, a solar energy storage effect due to the long‐persistent luminescence of SAED is obtained after light illumination is turned off. The introduction of downconverting material with long‐persistent luminescence in PSCs not only represents a new strategy to improve PCE and light stability by photoconversion from UV to visible light but also provides a new paradigm for solar energy storage.  相似文献   

5.
Multijunction (MJ) solar cells have the potential to operate across the entire solar spectrum, for ultrahigh efficiencies in light to electricity conversion. Here an MJ cell architecture is presented that offers enhanced capabilities in photon recycling and photon extraction, compared to those of conventional devices. Ideally, each layer of a MJ cell should recycle and re‐emit its own luminescence to achieve the maximum possible voltage. This design involves materials with low refractive indices as interfaces between sub‐cells in the MJ structure. Experiments demonstrate that thin‐film GaAs devices printed on low‐index substrates exhibit improved photon recycling, leading to increased open‐circuit voltages (V oc), consistent with theoretical predictions. Additional systematic studies reveal important considerations in the thermal behavior of these structures under highly concentrated illumination. Particularly when combined with other optical elements such as anti‐reflective coatings, these architectures represent important aspects of design for solar cells that approach thermodynamic efficiency limits for full spectrum operation.  相似文献   

6.
Donor–acceptor (D‐A) type π‐conjugated copolymers with crystalline behavior have been extensively investigated as donor semiconductors in organic photovoltaics (OPVs). On the other hand, the development of high‐performance amorphous donor materials is still behind. The amorphous donor copolymer DTS‐C0(F2) consisting of dithieno[3,2‐b:2′,3′‐d]silole ( DTS ) donor unit and the recently developed fluorine‐substituted naphtho[2,3‐c]thiophene‐4,9‐dione ( C0(F2) ) acceptor unit shows moderate photovoltaic performance upon blending with PC71BM. In this work, to enhance the hole‐transporting characteristics, a 3‐hexylthiophene ( HT ) spacer unit is integrated into the conjugated backbone, resulting in a new amorphous copolymer DTS‐HT‐C0(F2) . The strong electron‐accepting nature of C0(F2) allows the introduction of the HT spacer without affecting the frontier orbital energies and thus the D‐A character. Without using solvent additives and thermal annealing, OPVs based on DTS‐HT‐C0(F2) and [6,6]‐phenyl‐C71‐butyric acid methyl ester PC71BM show an improved power conversion efficiency of 9.12%. Investigation of the device physics unambiguously reveals that the hole mobility of the copolymer in the blend is increased by an order of magnitude by the introduction of HT , while keeping an amorphous film nature, leading to higher short‐circuit current density and fill factor. These results demonstrate the realization of high‐performance OPVs based on amorphous active layers.  相似文献   

7.
Metal‐halide perovskites show promise as highly efficient solar cells, light‐emitting diodes, and other optoelectronic devices. Ensuring long‐term stability is now a major priority. In this study, an ultrathin (2 nm) layer of polyethylenimine ethoxylated (PEIE) is used to functionalize the surface of C60 for the subsequent deposition of atomic layer deposition (ALD) SnO2, a commonly used electron contact bilayer for p–i–n devices. The enhanced nucleation results in a more continuous initial ALD SnO2 layer that exhibits superior barrier properties, protecting Cs0.25FA0.75Pb(Br0.20I0.80)3 films upon direct exposure to high temperatures (200 °C) and water. This surface modification with PEIE translates to more stable solar cells under aggressive testing conditions in air at 60 °C under illumination. This type of “built‐in” barrier layer mitigates degradation pathways not addressed by external encapsulation, such as internal halide or metal diffusion, while maintaining high device efficiency up to 18.5%. This nucleation strategy is also extended to ALD VOx films, demonstrating its potential to be broadly applied to other metal oxide contacts and device architectures.  相似文献   

8.
An upscalable perovskite film deposition method combining raster ultrasonic spray coating and chemical vapor deposition is reported. This method overcomes the coating size limitation of the existing stationary spray, single‐pass spray, and spin‐coating methods. In contrast with the spin‐coating method (>90% Pb waste), negligible Pb waste during PbI2 deposition makes this method more environmentally friendly. Outstanding film uniformity across the entire area of 5 cm × 5 cm is confirmed by both large‐area compatible characterization methods (electroluminescence and scattered light imaging) and local characterization methods (atomic force microscopy, scanning electron microscopy, photoluminescence mapping, UV–vis, and X‐ray diffraction measurements on multiple sample locations), resulting in low solar cell performance decrease upon increasing device area. With the FAPb(I0.85Br0.15)3 (FA = formamidinium) perovskite layer deposited by this method, champion solar modules show a power conversion efficiency of 14.7% on an active area of 12.0 cm2 and an outstanding shelf stability (only 3.6% relative power conversion efficiency decay after 3600 h aging). Under continuous operation (1 sun light illumination, maximum power point condition, dry N2 atmosphere with <5% relative humidity, no encapsulation), the devices show high light‐soaking stability corresponding to an average T80 lifetime of 535 h on the small‐area solar cells and 388 h on the solar module.  相似文献   

9.
Performance losses and aging mechanisms are investigated in state‐of‐the‐art PTB7:PC70BM solar cells. Inverted devices incorporating a vanadium pentoxide (V2O5) top contact have efficiencies of 8%. After aging the unencapsulated devices, no changes are observed in the open circuit voltage (Voc) or short circuit current (Jsc); however, the fill factor (FF) drops from 0.7 to 0.61. An s‐shape initially appears in the JV curve after aging, which can be reduced by cycling through the JV curve under illumination. This is discussed in context of the redox properties of V2O5. With impedance spectroscopy, it is demonstrated that changes to the contact interfaces are completely reversible and not responsible for the performance loss. Intensity modulated photocurrent spectroscopy combined with device modeling reveals that the loss in FF is due to trap formation in the active layer. Additionally it is observed that the performance of pristine devices is limited by optical absorption in the thin active layer and the build‐up of space charge which hinders carrier extraction.  相似文献   

10.
High‐quality charge carrier transport materials are of key importance for stable and efficient perovskite‐based photovoltaics. This work reports on electron‐beam‐evaporated nickel oxide (NiOx) layers, resulting in stable power conversion efficiencies (PCEs) of up to 18.5% when integrated into solar cells employing inkjet‐printed perovskite absorbers. By adding oxygen as a process gas and optimizing the layer thickness, transparent and efficient NiOx hole transport layers (HTLs) are fabricated, exhibiting an average absorptance of only 1%. The versatility of the material is demonstrated for different absorber compositions and deposition techniques. As another highlight of this work, all‐evaporated perovskite solar cells employing an inorganic NiOx HTL are presented, achieving stable PCEs of up to 15.4%. Along with good PCEs, devices with electron‐beam‐evaporated NiOx show improved stability under realistic operating conditions with negligible degradation after 40 h of maximum power point tracking at 75 °C. Additionally, a strong improvement in device stability under ultraviolet radiation is found if compared to conventional perovskite solar cell architectures employing other metal oxide charge transport layers (e.g., titanium dioxide). Finally, an all‐evaporated perovskite solar mini‐module with a NiOx HTL is presented, reaching a PCE of 12.4% on an active device area of 2.3 cm2.  相似文献   

11.
To realize efficient photoconversion in organic semiconductors, photogenerated excitons must be dissociated into their constituent electronic charges. In an organic photovoltaic (OPV) cell, this is most often accomplished using an electron donor–acceptor (D–A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo efficient bulk‐ionization and generate photocurrent as a result of the large built‐in field created by the MoOx/C60 interface. Here, it is demonstrated that bulk ionization processes also contribute to the short‐circuit current density (JSC) and open‐circuit voltage (VOC) in bulk heterojunction (BHJ) OPVs with fullerene‐rich compositions. Temperature‐dependent measurements of device performance are used to distinguish dissociation by bulk‐ionization from charge transfer at the D–A interface. In optimized fullerene‐rich BHJs based on the D–A pairing of boron subphthalocyanine chloride (SubPc)–C60, bulk‐ionization is found to be responsible for ≈16% of the total photocurrent, and >30% of the photocurrent originating from C60. The presence of bulk‐ionization in C60 also impacts the temperature dependence of VOC, with fullerene‐rich SubPc:C60 BHJ OPVs showing a larger VOC than evenly mixed BHJs. The prevalence of bulk‐ionization processes in efficient, fullerene‐rich BHJs underscores the need to include these effects when engineering device design and morphology in OPVs.  相似文献   

12.
With state‐of‐the‐art organic solar cells (OSCs) surpassing 16% efficiency, stability becomes critical for commercialization. In this work, the power of using photoluminescence (PL) measurements on plain films is demonstrated, as well as high‐performance liquid chromatography analysis to reveal the origin of UV instabilities in OSCs based on the most commonly used acceptors PC70BM ([6,6]‐phenyl‐C71‐butyric acid methyl ester), ITIC (3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene), and o‐IDTBR (indacenodithiophene‐based non‐fullerene acceptor). The UV dependent stability tests reveal instabilities in solar cells based on PC70BM and ITIC while devices based on o‐IDTBR are highly stable even under UV illumination. The analysis of solar cell devices based on charge extraction and sub‐bandgap external quantum efficiency only shows the UV‐dependent emergence of traps, while PL spectra of plain films on glass allows the disentanglement and identification of individual instabilities in multi‐component bulk‐heterojunction devices. In particular, the PL analysis demonstrates UV instabilities of PC70BM and ITIC toward the processing additive 1,8 diiodooctane (DIO). The chemical analysis reveals the in‐depth mechanism, by providing direct proof of photochemical reactions of PC70BM and ITIC with UV‐induced radicals of DIO. Based on this scientific understanding, it is shown how to stabilize PBQ‐QF:PC70BM devices.  相似文献   

13.
Organic/polymer semiconductors provide unique possibilities and flexibility in tailoring their optoelectronic properties to match specific application demands. One of the key factors contributing to the rapid and continuous progress of organic photovoltaics (OPVs) is the control and optimization of photoactive‐layer morphology. The impact of morphology on photovoltaic parameters has been widely observed. However, the highly complex and multilength‐scale morphology often formed in efficient OPV devices consisting of compositionally similar components impose obstacles to conventional morphological characterizations. In contrast, due to the high compositional and orientational sensitivity, resonant soft X‐ray scattering (R‐SoXS), and related techniques lead to tremendous progress of characterization and comprehension regarding the complex mesoscale morphology in OPVs. R‐SoXS is capable of quantifying the domain characteristics, and polarized soft X‐ray scattering (P‐SoXS) provides quantitative information on orientational ordering. These morphological parameters strongly correlate the fill factor (FF), open‐circuit voltage (Voc), as well as short‐circuit current (Jsc) in a wider range of OPV devices, including recent record‐efficiency polymer:fullerene solar cells and 12%‐efficiency fullerene‐free OPVs. This progress report will delineate the soft X‐ray scattering methodology and its future challenges to characterize and understand functional organic materials and provide a non‐exhaustive overview of R‐SoXS characterization and its implication to date.  相似文献   

14.
Although degradation mechanisms in organic photovoltaic devices continue to receive increased attention, it is only recently that the initial light‐induced failure, or so‐called burn‐in effect, has been considered. Both prototypical polythiophene:fullerene and polycarbazole:fullerene systems exhibit an exponential performance loss of ≈40% upon 150 h of continuous solar illumination. While the decrease in both the short‐circuit current (JSC) and open‐circuit voltage (VOC) is the origin of performance loss in poly(3‐hexylthiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PC60BM), in poly(N‐9′‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PCDTBT:PC70BM) the decline of the fill factor dominates. By systematic variation of the interface layers, active layer thickness, and acceptor in polythiophene:fullerene cells, the loss in JSC is ascribed to a degradation in the bulk of the P3HT:PC60BM, while the drop in VOC is reversible and arises from charge trapping at the contact interfaces. By replacing the C60 fullerene derivative with a C70 derivative, or by modifying the electron transport layer, the JSC or VOC, respectively, are stabilized. These insights prove that the burn‐in process stems from multiple concurrent failure mechanisms. Comparing the ageing and recovery processes in P3HT and PCDTBT blends results in the conclusion that their interface failures differ in nature and that burn‐in is a material dependent, rather than an intrinsic, failure mechanism.  相似文献   

15.
A power conversion efficiency (PCE) of 16.2% is achieved in PM6:BTP‐4F‐12 based organic photovoltaics (OPVs). On the basis of efficient binary OPVs, a series of ternary OPVs are constructed by incorporating MeIC as the third component. The open circuit voltages (VOCs) of ternary OPVs can be gradually increased along with the incorporation of MeIC, suggesting the formation of an alloy state between BTP‐4F‐12 and MeIC with good compatibility. The energy loss (Eloss) of ternary OPVs can be decreased compared with that of two binary OPVs, contributing to the VOC improvement of ternary OPVs. The short circuit current density (JSC) and fill factor (FF) of ternary OPVs can also be simultaneously enhanced with MeIC content up to 10 wt% in acceptors, leading to 17.4% PCE of the optimized ternary OPVs. The JSC and FF improvement of ternary OPVs is thought to result from the optimized ternary active layers with more efficient photon harvesting, exciton dissociation and charge transport. The 17.4% PCE and 79.2% FF is among the top values of ternary OPVs. This work indicates that a ternary strategy is an emerging method to simultaneously minimize Eloss and optimize photon harvesting as well as improve the morphology of active layers for realizing performance improvement for OPVs.  相似文献   

16.
Large area flexible electronics rely on organic or hybrid materials prone to degradation limiting the device lifetime. For many years, photo‐oxidation has been thought to be one of the major degradation pathways. However, intense illumination may lead to a burn‐in or a rapid decrease in performance for devices completely isolated from corrosive elements as oxygen or moisture. The experimental studies which are presented in here indicate that a plausible triggering for the burn‐in is a spin flip after a UV photon absorption leading to the accumulation of electrostatic potential energy that initiates a rapid destruction of the nanomorpholgy in the fullerene phase of a polymer cell. To circumvent this and achieve highly stable and efficient devices, a robust nanocrystalline ordering is induced in the PCBM phase prior to UV illumination. In that event, PTB7‐Th:PC71BM cells are shown to exhibit T80 lifetimes larger than 1.6 years under a continuous UV‐filtered 1‐sun illumination, equivalent to 7 years for sunlight harvesting at optimal orientation and 10 years for vertical applications.  相似文献   

17.
A systematic study on the effect of various cathode buffer layers on the performance and stability of solution‐processed small‐molecule organic solar cells (SMOSCs) based on tris{4‐[5‐(1,1‐dicyanobut‐1‐en‐2‐yl)‐2,2‐bithiophen‐5‐yl]phenyl}amine (N(Ph‐2T‐DCN‐Et)3):6,6‐phenyl‐C71‐butyric acid methyl ester (N(Ph‐2T‐DCN‐Et)3:PC70BM) is presented. The power conversion efficiency (PCE) in these systems can be significantly improved from approximately 4% to 5.16% by inserting a metal oxide (ZnO) layer between the active layer and the Al cathode instead of an air‐sensitive Ba or Ca layer. However, the low work‐function Al cathode is susceptible to chemical oxidation in the atmosphere. Here, an amine group functionalized fullerene complex (DMAPA‐C60) is inserted as a cathode buffer layer to successfully modify the interface towards ZnO/Ag and active layer/Ag functionality. For devices with ZnO/DMAPA‐C60/Ag and DMAPA‐C60/Ag cathodes the PCEs are improved from 2.75% to 4.31% and to 5.40%, respectively, compared to a ZnO/Ag device. Recombination mechanisms and stability aspects of devices with various cathodes are also investigated. The significant improvement in device performance and stability and the simplicity of fabrication by solution processing suggest this DMAPA‐C60‐based interface as a promising and practical pathway for developing efficient, stable, and roll‐to‐roll processable SMOSCs.  相似文献   

18.
This paper presents a systematic study of the influence of electron‐transport materials on the operation stability of the inverted perovskite solar cells under both laboratory indoor and the natural outdoor conditions in the Negev desert. It is shown that all devices incorporating a Phenyl C61 Butyric Acid Methyl ester ([60]PCBM) layer undergo rapid degradation under illumination without exposure to oxygen and moisture. Time‐of‐flight secondary ion mass spectrometry depth profiling reveals that volatile products from the decomposition of methylammonium lead iodide (MAPbI3) films diffuse through the [60]PCBM layer, go all the way toward the top metal electrode, and induce its severe corrosion with the formation of an interfacial AgI layer. On the contrary, alternative electron‐transport material based on the perylendiimide derivative provides good isolation for the MAPbI3 films preventing their decomposition and resulting in significantly improved device operation stability. The obtained results strongly suggest that the current approach to design inverted perovskite solar cells should evolve with respect to the replacement of the commonly used fullerene‐based electron‐transport layers with other types of materials (e.g., functionalized perylene diimides). It is believed that these findings pave a way toward substantial improvements in the stability of the perovskite solar cells, which are essential for successful commercialization of this photovoltaic technology.  相似文献   

19.
This work deals with the investigation of burn‐in loss in ternary blended organic photovoltaics (OPVs) prepared from a UV‐crosslinkable semiconducting polymer (P2FBTT‐Br) and a nonfullerene acceptor (IEICO‐4F) via a green solvent process. The synthesized P2FBTT‐Br can be crosslinked by UV irradiation for 150 s and dissolved in 2‐methylanisole due to its asymmetric structure. In OPV performance and burn‐in loss tests performed at 75 °C or AM 1.5G Sun illumination for 90 h, UV‐crosslinked devices with PC71BM show 9.2% power conversion efficiency (PCE) and better stability against burn‐in loss than pristine devices. The frozen morphology resulting from the crosslinking prevents lateral crystallization and aggregation related to morphological degradation. When IEICO‐4F is introduced in place of a fullerene‐based acceptor, the burn‐in loss due to thermal aging and light soaking is dramatically suppressed because of the frozen morphology and high miscibility of the nonfullerene acceptor (18.7% → 90.8% after 90 h at 75 °C and 37.9% → 77.5% after 90 h at AM 1.5G). The resulting crosslinked device shows 9.4% PCE (9.8% in chlorobenzene), which is the highest value reported to date for crosslinked active materials, in the first green processing approach.  相似文献   

20.
Easily accessible tetra‐5‐hexylthiophene‐, tetra‐5‐hexyl‐2,2′‐bisthiophene‐substituted zinc phthalocyanines (ZnPcs) and tetra‐tert ‐butyl ZnPc are employed as hole‐transporting materials in mixed‐ion perovskite [HC(NH2)2]0.85(CH3NH3)0.15Pb(I0.85Br0.15)3 solar cells, reaching the highest power conversion efficiency (PCE) so far for phthalocyanines. Results confirm that the photovoltaic performance is strongly influenced by both, the individual optoelectronic properties of ZnPcs and the aggregation of these tetrapyrrolic semiconductors in the solid thin film. The optimized devices exhibit PCE of 15.5% when using tetra‐5‐hexyl‐2,2′‐bisthiophene substituted ZnPcs, 13.3% for tetra‐tert ‐butyl ZnPc, and a record 17.5% for tetra‐5‐hexylthiophene‐based analogue under standard global 100 mW cm?2 AM 1.5G illumination. These results boost up the potential of solution‐processed ZnPc derivatives as stable and economic hole‐transport materials for large‐scale applications, opening new frontiers toward a realistic, efficient, and inexpensive energy production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号