首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Interfacial energetics determines the performance of organic photovoltaic (OPV) cells based on a thin film of organic semiconductor blends. Here, an approach to modulating the “carrier selectivity” at the charge collecting interfaces and the consequent variations in the nongeminate charge carrier recombination dynamics in OPV devices are demonstrated. A ferroelectric blend interfacial layer composed of a solution‐processable ferroelectric poly­mer and a wide bandgap semiconductor is introduced as a tunable electron selective layer in inverted OPV devices with non‐Ohmic contact electrodes. The direct rendering of dipole alignment within the ferroelectric blend layer is found to increase the carrier selectivity of the charge collecting interfaces up to two orders of magnitude. Transient photovoltaic analyses reveal that the increase of carrier selectivity significantly reduces the diffusion and recombination among minority carriers in the vicinity of the electrodes, giving rise to the 85% increased charge carrier lifetime. Furthermore, the carrier‐selective charge extraction leads to the constitution of the internal potential within the devices, even with energetically identical cathodes and anodes. With these carrier‐selectivity‐controlled interlayers, the devices based on various photoactive materials commonly display significant increments in the device performances, especially with the high fill factor of up to 0.76 under optimized conditions.  相似文献   

2.
Charge transport in organic photovoltaic (OPV) devices is often characterized by steady‐state mobilities. However, the suitability of steady‐state mobilities to describe charge transport has recently been called into question, and it has been argued that dispersion plays a significant role. In this paper, the importance of the dispersion of charge carrier motion on the performance of organic photovoltaic devices is investigated. An experiment to measure the charge extraction time under realistic operating conditions is set up. This experiment is applied to different blends and shows that extraction time is directly related to the geometrical average of the steady‐state mobilities. This demonstrates that under realistic operating conditions the steady‐state mobilities govern the charge extraction of OPV and gives a valuable insight in device performance.  相似文献   

3.
With the advances in organic photovoltaics (OPVs), the invention of model polymers with superior properties and wide applicability is of vital importance to both the academic and industrial communities. The recent inspiring advances in OPV research have included the emergence of poly(benzodithiophene‐co‐thieno[3,4‐b]thiophene) (PBDTTT)‐based materials. Through the combined efforts on PBDTTT polymers, over 10% efficiencies have been realized recently in various types of OPV devices. This review attempts to critically summarize the recent advances with respect to five well‐known PBDTTT polymers and their design considerations, basic properties, photovoltaic performance, as well as device application in conventional, inverted, tandem solar cells. These PBDTTT polymers also make great contributions to the rapid advances in the field of emerging ternary blends and fullerene‐free OPVs with top performances. Addtionally, new challenges in developing novel photovoltaic polymers with more superior properties are prospected. More importantly, the research of highly efficient PBDTTT‐based polymers provides useful insights and builds fundamentals for new types of OPV applications with various architectures.  相似文献   

4.
While the demonstrated power conversion efficiency of organic photovoltaics (OPVs) now exceeds 10%, new design rules are required to tailor interfaces at the molecular level for optimal exciton dissociation and charge transport in higher efficiency devices. We show that molecular shape‐complementarity between donors and acceptors can drive performance in OPV devices. Using core hole clock (CHC) X‐ray spectroscopy and density functional theory (DFT), we compare the electronic coupling, assembly, and charge transfer rates at the interface between C60 acceptors and flat‐ or contorted‐hexabenzocorone (HBC) donors. The HBC donors have similar optoelectronic properties but differ in molecular contortion and shape matching to the fullerene acceptors. We show that shape‐complementarity drives self‐assembly of an intermixed morphology with a donor/acceptor (D/A) ball‐and‐socket interface, which enables faster electron transfer from HBC to C60. The supramolecular assembly and faster electron transfer rates in the shape complementary heterojunction lead to a larger active volume and enhanced exciton dissociation rate. This work provides fundamental mechanistic insights on the improved efficiency of organic photovoltaic devices that incorporate these concave/convex D/A materials.  相似文献   

5.
We present the addition of an energy relay dye to fullerenes resulting in increased light harvesting and significantly improved power conversion efficiency for organic photovoltaic (OPV) devices. Although exhibiting excellent properties as electron acceptors, visible light absorption of fullerenes is limited. Strongly light absorbing donor materials are needed for efficient light harvesting in the thin active layer of OPV devices. Therefore, photocurrent generation and thus power conversion efficiency of this type of solar cell is confined by the overlap of the relatively narrow absorption band of commonly used donor molecules with the solar spectrum. Herein the concept of fullerene dye sensitization is presented, which allows increased light harvesting on the electron acceptor side of the heterojunction. The concept is exemplarily shown for an UV absorbing small molecule and a near infrared absorbing polymer, namely hexa‐peri‐hexabenzocoronene (HBC) and Poly[2,1,3‐benzothiadiazole‐4,7‐diyl[4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b']dithiophene‐2,6‐diyl]] (PCPDTBT), respectively. In both systems remarkably higher power conversion efficiency is achieved via perylene sensitization of the fullerene acceptor. Steady state photoluminescence, transient absorption and transient photocurrent decay studies reveal pathways of the additionally generated excited states at the sensitizer molecule. The findings suggest fluorescence resonance energy transfer from the photo‐excited dye to the fullerene enabling decoupling of light absorption and charge transport. The presented sensitization method is proposed as a viable new concept for performance enhancement in organic photovoltaic devices.  相似文献   

6.
Semitransparent organic photovoltaic (OPV) cells promise applications in various transparent architectures where their opaque counterparts cannot contribute. Realizing practical applications of this technology requires the manufacturing of large‐area modules without significant performance loss compared to the lab‐scale devices. In this work, efficient semitransparent OPV modules based on ultrafast laser patterning on both glass and flexible substrates are reported. Solution‐processed metallic silver nanowires (AgNWs) are used as transparent top electrodes. The efficient low‐ohmic contact of the interconnects between the top AgNWs and the bottom electrode in combination with high‐precision laser beam positioning system allow to fabricate semitransparent modules with high electrical fill factor of ≈63% and a remarkable geometric fill factor exceeding 95%, respectively. These results represent an important progress toward upscaling of high‐performance OPV modules with reduced production costs.  相似文献   

7.
Time‐dependent charge transport in operating poly(3‐hexylthiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) bulk heterojunction organic photovoltaic (OPV) devices has been characterized with impedance spectroscopy. Devices with varied composition and morphology were measured over a range of illumination intensities ranging from dark conditions to 1 sun and applied bias voltages ranging from 0.0 V to 0.75 V. Using an equivalent circuit model, materials properties such as dielectric constant and conductivity were determined and found to be in agreement with values measured by other methods. Average carrier lifetimes were also extracted from the model and found to correlate with measured power conversion efficiencies. At the short circuit condition and ~1 sun illumination, the average electron lifetime was found to vary from 7.8 to 22 μs for devices with power conversion efficiencies ranging from 2.0 to 2.5%. These results suggest that impedance spectroscopy is an effective tool for predicting how processing parameters can impact device performance in organic bulk heterojunction photovoltaic devices.  相似文献   

8.
Investigations on the impact of interfacial modification on organic optoelectronic device performance often attribute the improved device performance to the optoelectronic properties of the modifier. A critical assumption of such conclusions is that the organic active layer deposited on top of the modified surface (interface) remains unaltered. Here the validity of this assumption is investigated by examining the impact of substrate surface properties on the morphology of poly(3‐hexylthiophene):1‐(3‐methoxycarbonyl)‐propyl‐1‐phenyl‐[6,6]C61 (P3HT:PCBM) bulk‐heterojunction (BHJ). A set of four nickel oxide and poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layers (HTL) with contrasting surface properties and performance in organic photovoltaic (OPV) devices is studied. Differences in vertical composition variation and structural morphologies are observed across the samples, but only in the near‐interface region of <~20 nm. Near‐interface differences in morphology are most closely correlated with surface polarity and surface roughness of the HTL. Surface polarity is more influenced by surface composition than surface roughness and crystal structure. These findings corroborate the previously mentioned conclusions that the differences in device performance observed in solar cells employing these HTLs are dominated by the electronic properties of the HTL/organic photoactive active layer interface and not by unintentional alteration in the BHJ active layer morphology.  相似文献   

9.
Charge transport in organic photovoltaic (OPV) devices is often characterized by space‐charge limited currents (SCLC). However, this technique only probes the transport of charges residing at quasi‐equilibrium energies in the disorder‐broadened density of states (DOS). In contrast, in an operating OPV device the photogenerated carriers are typically created at higher energies in the DOS, followed by slow thermalization. Here, by ultrafast time‐resolved experiments and simulations it is shown that in disordered polymer/fullerene and polymer/polymer OPVs, the mobility of photogenerated carriers significantly exceeds that of injected carriers probed by SCLC. Time‐resolved charge transport in a polymer/polymer OPV device is measured with exceptionally high (picosecond) time resolution. The essential physics that SCLC fails to capture is that of photo­generated carrier thermalization, which boosts carrier mobility. It is predicted that only for materials with a sufficiently low energetic disorder, thermalization effects on carrier transport can be neglected. For a typical device thickness of 100 nm, the limiting energetic disorder is σ ≈71 (56) meV for maximum‐power point (short‐circuit) conditions, depending on the error one is willing to accept. As in typical OPV materials the disorder is usually larger, the results question the validity of the SCLC method to describe operating OPVs.  相似文献   

10.
Nanofibers consisting of the bulk heterojunction organic photovoltaic (BHJ–OPV) electron donor–electron acceptor pair poly(3‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) are produced through a coaxial electrospinning process. While P3HT:PCBM blends are not directly electrospinnable, P3HT:PCBM‐containing fibers are produced in a coaxial fashion by utilizing polycaprolactone (PCL) as an electrospinnable sheath material. Pure P3HT:PCBM fibers are easily obtained after electrospinning by selectively removing the PCL sheath with cyclopentanone (average diameter 120 ± 30 nm). These fibers are then incorporated into the active layer of a BHJ–OPV device, which results in improved short‐circuit current densities, fill factors, and power‐conversion efficiencies (PCE) as compared to thin‐film devices of identical chemical composition. The best‐performing fiber‐based devices exhibit a PCE of 4.0%, while the best thin‐film devices have a PCE of 3.2%. This increase in device performance is attributed to the increased in‐plane alignment of P3HT polymer chains on the nanoscale, caused by the electrospun fibers, which leads to increased optical absorption and subsequent exciton generation. This methodology for improving device performance of BHJ–OPVs could also be implemented for other electron donor–electron acceptor systems, as nanofiber formation is largely independent of the PV material.  相似文献   

11.
Evaporation is the most commonly used deposition method in the processing of back electrodes in polymer solar cells used in scientific studies. However, vacuum‐based methods such as evaporation are uneconomical in the upscaling of polymer solar cells as they are throughput limiting steps in an otherwise fast roll‐to‐roll production line. In this paper, the applicability of inkjet printing in the ambient processing of back electrodes in inverted polymer solar cells with the structure ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag is investigated. Furthermore, the limitation of screen printing, the commonly employed method in the ambient processing of back electrode, is demonstrated and discussed. Both inkjet printing and screen printing of back electrodes are studied for their impact on the photovoltaic properties of the polymer solar cells measured under 1000 Wm?2 AM1.5. Each ambient processing technique is compared with evaporation in the processing of back electrode. Laser beam induced current (LBIC) imaging is used to investigate the impact of the processing techniques on the current collection in the devices. We report that inkjet printing of back electrode delivers devices having photovoltaic performance comparable to devices with evaporated back electrodes. We further confirm that inkjet printing represent an efficient alternative to screen printing.  相似文献   

12.
Organic photovoltaic (OPV) solar cells that can be simply processed from solution are in the focus of the academic and industrial community because of their enormous potential to reduce cost. One big challenge in developing a fully solution‐processed OPV technology is the design of a well‐performing electrode system, allowing the replacement of ITO. Several solution‐processed electrode systems were already discussed, but none of them could match the performance of ITO. Here, we report efficient ITO‐free and fully solution‐processed semitransparent inverted organic solar cells based on silver nanowire (AgNW) electrodes. To demonstrate the potential of these AgNW electrodes, they were employed as both the bottom and top electrodes. Record devices achieved fill factors as high as 63.0%, which is comparable to ITO based reference devices. These results provide important progress for fully printed organic solar cells and indicate that ITO‐free, transparent as well as non‐transparent organic solar cells can indeed be fully solution‐processed without losses.  相似文献   

13.
A substantial broadband increase in the external quantum efficiency (EQE) of thin‐film organic photovoltaic (OPV) devices using near‐field coupling to surface plasmons is reported, significantly enhancing absorption at surface plasmon resonance (SPR). The devices tested consist of an archetypal boron subpthalocyanine chloride/fullerene (SubPc/C60) donor/acceptor heterojunction embedded within a planar semitransparent metallic nanocavity. The absorption and EQE are modeled in detail and probed by attenuated total internal reflection spectroscopy with excellent agreement. At SPR, the EQE can be enhanced fourfold relative to normal incidence, due to simulated ninefold enhancement in active layer absorption efficiency. The response at SPR is thickness‐independent, down to a few monolayers, suggesting the ability to excite monolayer‐scale junctions with an EQE of ≈6% and a 16‐fold absorption enhancement over normal incidence. These results potentially impact the future design of plasmonically enhanced thin‐film photovoltaics and photodetectors and enable the direct analysis of the dynamics of photocurrent production at OPV heterojunctions.  相似文献   

14.
Organic photovoltaic (OPV) materials are inherently inhomogeneous at the nanometer scale. Nanoscale inhomogeneity of OPV materials affects performance of photovoltaic devices. Thus, understanding of spatial variations in composition as well as electrical properties of OPV materials is of paramount importance for moving PV technology forward.1,2 In this paper, we describe a protocol for quantitative measurements of electrical and mechanical properties of OPV materials with sub-100 nm resolution. Currently, materials properties measurements performed using commercially available AFM-based techniques (PeakForce, conductive AFM) generally provide only qualitative information. The values for resistance as well as Young''s modulus measured using our method on the prototypical ITO/PEDOT:PSS/P3HT:PC61BM system correspond well with literature data. The P3HT:PC61BM blend separates onto PC61BM-rich and P3HT-rich domains. Mechanical properties of PC61BM-rich and P3HT-rich domains are different, which allows for domain attribution on the surface of the film. Importantly, combining mechanical and electrical data allows for correlation of the domain structure on the surface of the film with electrical properties variation measured through the thickness of the film.  相似文献   

15.
As mass‐produced, low‐cost organic electronics enter our everyday lives, so does the waste from them. The challenges associated with end‐of‐life management must be addressed by careful design and carbon‐based electrodes are central to these developments. Here, the reproducible production of vacuum‐, indium tin oxide (ITO)‐, and silver‐free solar cells in a fully packaged form using only roll‐to‐roll processing is reported. Replacing silver with carbon as electrode material significantly lowers the manufacturing cost and makes the organic photovoltaic (OPV) modules environmentally safe while retaining their flexibility, active area efficiency, and stability. The substitution of silver with carbon does not affect the roll‐to‐roll manufacturing of the modules and allows for the same fast printing and coating. The use of carbon as electrode material is one step closer to the wide release of low‐cost plastic solar cells and opens the door to new possible applications where silver recycling is not manageable.  相似文献   

16.
Hybrid organic/inorganic perovskite solar cells are invigorating the photovoltaic community due to their remarkable properties and efficiency. However, many perovskite solar cells show an undesirable current–voltage (IV) hysteresis in their forward and reverse voltage scans, working to the detriment of device characterization and performance. This hysteresis likely arises from slow ion migration in the bulk perovskite active layer to interfaces which may induce charge trapping. It is shown that interfacial chemistry between the perovskite and charge transport layer plays a critical role in ion transport and IV hysteresis in perovskite‐based devices. Specifically, phenylene vinylene polymers containing cationic, zwitterionic, or anionic pendent groups are utilized to fabricate charge transport layers with specific interfacial ionic functionalities. The interfacial‐adsorbing boundary induced by the zwitterionic polymer in contact with the perovskite increases the local ion concentration, which is responsible for the observed IV hysteresis. Moreover, the ion adsorbing properties of this interface are exploited for perovskite‐based memristors. This fundamental study of IV hysteresis in perovskite‐based devices introduces a new mechanism for inducing memristor behavior by interfacial ion adsorption.  相似文献   

17.
Properties of hole transporting layers (HTLs) and back electrode are very critical to the stability of inverted bulk heterojunction organic photovoltaic (OPV) modules. Here, various deposition methods for back electrodes and materials of HTLs are examined by applying to inverted organic solar cells with a structure of indium tin oxide/ZnO/photoactive layer/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/Ag. The experiment is performed on encapsulated modules with flexible barrier films under accelerated conditions. The OPV modules with screen‐printed Ag electrodes are shown to be electrically unstable with a reduction of the current density under damp heat condition at 85 °C/85% RH. Optical images for the active layer/PEDOT:PSS interface reveal that a reaction between the solvent from the Ag electrode and the underlying layers is the major cause for the degradation. In comparison with materials of the HTLs, the PEDOT:PSS layer shows low stability compared to the MoO3 layer under the accelerated conditions. Unusual chemical changes in the PEDOT:PSS film are observed through X‐ray photoelectron spectroscopy and this is further addressed by correlating the stability of the OPV devices.  相似文献   

18.
The effort to develop earth‐abundant kesterite solar cells has led to an approximate doubling of the power conversion efficiency over the past five years to 12.6%, primarily due to increases in short‐circuit current and fill factor; open‐circuit voltage has resisted similar change, limiting further efficiency improvement. In the present investigation, Auger nanoprobe spectroscopy, X‐ray/ultraviolet photoelectron spectroscopy, and device characterization are used to provide a comprehensive understanding of the role of grain boundaries and interfaces in limiting performance in kesterite‐based devices. High photovoltaic performance is found to correlate with grain boundaries that are Cu‐depleted and enriched with SnOx. The formation of this bulk‐like oxide at grain boundaries with type I band offset provides a unique effective passivation that limits electron‐hole recombination. Building on these new insights, photovoltaic device simulations are performed that show optimized electrostatic designs can compensate for bulk defects, allowing efficiencies closer to the theoretical limit.  相似文献   

19.
Polycrystalline materials like Cu–Pb alloy consist of four types of microstructural components, including grain cells, grain boundaries, triple junctions and vertex points, the mechanical properties of which governed by the atomic proportion of the alloy elements to a certain degree. The internal stresses from such microstructural components are quite different. Due to experimental limitations, the internal stresses from the alloy materials are difficult to measure directly, especially in the microstructural components. Here, we report a bottom-up approach using an atomistic calculation to obtain atomic properties in Cu-based alloy, as well as that in the microstructural components. The results reveal that a steep stress gradient exists at the interfaces of the alloy, which decreases significantly with the increase of the Pb. The defects evolution process in the alloy samples are investigated during tensile loading, revealing that the defect nucleation is delayed due to the decreasing von Mises stress gradient in the interfaces region as Pb increased. And the increased hydrostatic pressure in the interfaces regions, as a secondary factor can promote the defect nucleation. Among alloy samples with a grain size of 18.58 nm, that with 6.6 at.% Pb has minimal defects and the best mechanical properties.  相似文献   

20.
Low power electronics are an ideal application for organic photovoltaics (OPV) where a low‐cost OPV device can be integrated directly with a battery to provide a constant power source. We demonstrate ultra‐high voltage small molecule multijunction devices with open circuit voltage (VOC) values of up to 7V. Optical modelling is employed to aid the optimisation of the complex multi‐layer stacks and ensure current balancing is achieved between sub‐cells, and optimised multijunction devices show power conversion efficiencies of up to 3.4% which is a modest increase over the single junction devices. Sub‐cell donor/acceptor pairs of boron subphthalocyanine chloride (SubPc)/fullerene (C60) and SubPc/Cl6‐SubPc were selected both for their high VOC in order to minimise the required number of junctions, but also for their absorption overlap to reduce the spectral dependence of the device performance. As a result, the devices are shown to directly charge a micro‐energy cell type battery under both low illumination intensity white light and monochromatic illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号