首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase transitions play a crucial role in Li‐ion battery electrodes being decisive for both the power density and cycle life. The kinetic properties of phase transitions are relatively unexplored and the nature of the phase transition in defective spinel Li4+xTi5O12 introduces a controversy as the very constant (dis)charge potential, associated with a first‐order phase transition, appears to contradict the exceptionally high rate performance associated with a solid–solution reaction. With the present density functional theory study, a microscopic mechanism is put forward that provides deeper insight in this intriguing and technologically relevant material. The local substitution of Ti with Li in the spinel Li4+xTi5O12 lattice stabilizes the phase boundaries that are introduced upon Li‐ion insertion. This facilitates a subnanometer phase coexistence in equilibrium, which although very similar to a solid solution should be considered a true first‐order phase transition. The resulting interfaces are predicted to be very mobile due to the high mobility of the Li ions located at the interfaces. This highly mobile, almost liquid‐like, subnanometer phase morphology is able to respond very fast to nonequilibrium conditions during battery operation, explaining the excellent rate performance in combination with a first‐order phase transition.  相似文献   

2.
A new approach to intentionally induce phase transition of Li‐excess layered cathode materials for high‐performance lithium ion batteries is reported. In high contrast to the limited layered‐to‐spinel phase transformation that occurred during in situ electrochemical cycles, a Li‐excess layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is completely converted to a Li4Mn5O12‐type spinel product via ex situ ion‐exchanges and a post‐annealing process. Such a layered‐to‐spinel phase conversion is examined using in situ X‐ray diffraction and in situ high‐resolution transmission electron microscopy. It is found that generation of sufficient lithium ion vacancies within the Li‐excess layered oxide plays a critical role for realizing a complete phase transition. The newly formed spinel material exhibits initial discharge capacities of 313.6, 267.2, 204.0, and 126.3 mAh g?1 when cycled at 0.1, 0.5, 1, and 5 C (1 C = 250 mA g?1), respectively, and can retain a specific capacity of 197.5 mAh g?1 at 1 C after 100 electrochemical cycles, demonstrating remarkably improved rate capability and cycling stability in comparison with the original Li‐excess layered cathode materials. This work sheds light on fundamental understanding of phase transitions within Li‐excess layered oxides. It also provides a novel route for tailoring electrochemical performance of Li‐excess layered cathode materials for high‐capacity lithium ion batteries.  相似文献   

3.
Li2MnO3 is a critical component in the family of “Li‐excess” materials, which are attracting attention as advanced cathode materials for Li‐ion batteries. Here, first‐principle calculations are presented to investigate the electrochemical activity and structural stability of stoichiometric LixMnO3 (0 ≤ x ≤ 2) as a function of Li content. The Li2MnO3 structure is electrochemically activated above 4.5 V on delithiation and charge neutrality in the bulk of the material is mainly maintained by the oxidization of a portion of the oxygen ions from O2? to O1?. While oxygen vacancy formation is found to be thermodynamically favorable for x < 1, the activation barriers for O2? and O1? migration remain high throughout the Li com­position range, impeding oxygen release from the bulk of the compound. Defect layered structures become thermodynamically favorable at lower Li content (x < 1), indicating a tendency towards the spinel‐like structure transformation. A critical phase transformation path for forming nuclei of spinel‐like domains within the matrix of the original layered structure is proposed. Formation of defect layered structures during the first charge is shown to manifest in a depression of the voltage profile on the first discharge, providing one possible explanation for the observed voltage fade of the Li‐excess materials.  相似文献   

4.
Lithium–sulfur (Li–S) batteries have great promise to support the next‐generation energy storage if their sluggish redox kinetics and polysulfide shuttling can be addressed. The rational design of sulfur electrodes plays key roles in tacking these problems and achieving high‐efficiency sulfur electrochemistry. Herein, a synergetic defect and architecture engineering strategy to design highly disordered spinel Ni–Co oxide double‐shelled microspheres (NCO‐HS), which consist of defective spinel NiCo2O4–x (x = 0.9 if all nickel is Ni2+ and cobalt is Co2.13+), as the multifunctional sulfur host material is reported. The in situ constructed cation and anion defects endow the NCO‐HS with significantly enhanced electronic conductivity and superior polysulfide adsorbability. Meanwhile, the delicate nanoconstruction offers abundant active interfaces and reduced ion diffusion pathways for efficient Li–S chemistry. Attributed to these synergistic features, the sulfur composite electrode achieves excellent rate performance up to 5 C, remarkable cycling stability over 800 cycles and good areal capacity of 6.3 mAh cm?2 under high sulfur loading. This proposed strategy based on synergy engineering could also inform material engineering in related energy storage and conversion fields.  相似文献   

5.
Understanding the interfacial electronic structures of heterojunctions, a challenging undertaking, is extremely important to the design of photoelectrodes for efficient water splitting. The heterostructured interfaces in terms of crystal defects at the atomic‐level exemplified by TiO2/BiVO4 are studied. Results from both experimental observations and theoretical calculations clearly confirm the spontaneous formation of defective interfaces in the heterostructures. TiO2/BiVO4 junction with engineered interfacial defects can efficiently increase the carrier density and extend the lifetime of electrons. The inherent phenomenon of defective electronic structures in different heterostructures creates a significant impact on their photoelectrochemical performance. The synergetic effect between defect‐mediated mechanism and organic quantum dots sensitization yields significantly increased photoconversion efficiency, which is even superior to that of common metal sulfide sensitized ones. This result demonstrates an approach worthy for the design and fabrication of defect‐mediated heterostructures for water splitting, without utilizing harmful metal sulfides. Moreover, new insights into the influence of intrinsic defects on the interfacial charge transfer process between two different semiconductors for energy‐related applications have also been provided.  相似文献   

6.
A combination of high ionic conductivity and facile processing suggest that sulfide‐based materials are promising solid electrolytes that have the potential to enable Li metal batteries. Although the Li2S‐P2S5 (LPS) family of compounds exhibit desirable characteristics, it is known that Li metal preferentially propagates through microstructural defects, such as particle boundaries and/or pores. Herein, it is demonstrated that a near theoretical density (98% relative density) LPS 75‐25 glassy electrolyte exhibiting high ionic conductivity can be achieved by optimizing the molding pressure and temperature. The optimal molding pressure reduces porosity and particle boundaries while preserving the preferred amorphous structure. Moreover, molecular rearrangements and favorable Li coordination environments for conduction are attained. Consequently, the Young's Modulus approximately doubles (30 GPa) and the ionic conductivity increases by a factor of five (1.1 mS cm?1) compared to conventional room temperature molding conditions. It is believed that this study can provide mechanistic insight into processing‐structure‐property relationships that can be used as a guide to tune microstructural defects/properties that have been identified to have an effect on the maximum charging current that a solid electrolyte can withstand during cycling without short‐circuiting.  相似文献   

7.
The high‐energy‐density, Li‐rich layered materials, i.e., xLiMO2(1‐x)Li2MnO3, are promising candidate cathode materials for electric energy storage in plug‐in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). The relatively low rate capability is one of the major problems that need to be resolved for these materials. To gain insight into the key factors that limit the rate capability, in situ X‐ray absorption spectroscopy (XAS) and X‐ray diffraction (XRD) studies of the cathode material, Li1.2Ni0.15Co0.1Mn0.55O2 [0.5Li(Ni0.375Co0.25 Mn0.375)O2·0.5Li2MnO3], are carried out. The partial capacity contributed by different structural components and transition metal elements is elucidated and correlated with local structure changes. The characteristic reaction kinetics for each element are identified using a novel time‐resolved XAS technique. Direct experimental evidence is obtained showing that Mn sites have much poorer reaction kinetics both before and after the initial activation of Li2MnO3, compared to Ni and Co. These results indicate that Li2MnO3 may be the key component that limits the rate capability of Li‐rich layered materials and provide guidance for designing Li‐rich layered materials with the desired balance of energy density and rate capability for different applications.  相似文献   

8.
Olivine‐type LiMnPO4 (LMP) cathodes have gained enormous attraction for Li‐ion batteries (LIBs), thanks to their large theoretical capacity, high discharge platform, and thermal stability. However, it is still hugely challenging to achieve encouraging Li‐storage behaviors owing to their low electronic conductivity and limited lithium diffusion. Herein, the core double‐shell Ti‐doped LMP@NaTi2(PO4)3@C/3D graphene (TLMP@NTP@C/3D‐G) architecture is designed and constructed via an in situ synthetic methodology. A continuous electronic conducting network is formed with the unfolded 3D‐G and conducting carbon nanoshell. The Nasicon‐type NTP nanoshell with exceptional ionic conductivity efficiently inhibits gradual enrichment in by‐products, and renders low surfacial/interfacial electron/ion‐diffusion resistance. Besides, a rapid Li+ diffusion in the bulk structure is guaranteed with the reduction of MnLi+˙ antisite defects originating from the synchronous Ti‐doping. Benefiting from synergetic contributions from these design rationales, the integrated TLMP@NTP@C/3D‐G cathode yields high initial discharge capacity of ≈164.8 mAh g?1 at 0.05 C, high‐rate reversible capacity of ≈116.2 mAh g?1 at 10 C, and long‐term capacity retention of ≈93.3% after 600 cycles at 2 C. More significantly, the electrode design developed here will exert significant impact upon constructing other advanced cathodes for high‐energy/power LIBs.  相似文献   

9.
Understanding and optimizing the temperature effects of Li‐ion diffusion by analyzing crystal structures of layered Li(NixMnyCoz)O2 (NMC) (x + y + z = 1) materials is important to develop advanced rechargeable Li‐ion batteries (LIBs) for multi‐temperature applications with high power density. Combined with experiments and ab initio calculations, the layer distances and kinetics of Li‐ion diffusion of LiNixMnyCozO2 (NMC) materials in different states of Li‐ion de‐intercalation and temperatures are investigated systematically. An improved model is also developed to reduce the system error of the “Galvanostatic Intermittent Titration Technique” with a correction of NMC particle size distribution. The Li‐ion diffusion coefficients of all the NMC materials are measured from ?25 to 50 °C. It is found that the Li‐ion diffusion coefficient of LiNi0.6Mn0.2Co0.2O2 is the largest with the minimum temperature effect. Ab initio calculations and XRD measurements indicate that the larger Li slab space benefits to Li‐ion diffusion with minimum temperature effect in layered NMC materials.  相似文献   

10.
Li deposition is observed and measured on a solid electrolyte in the vicinity of a metallic current collector. Four types of ion‐conducting, inorganic solid electrolytes are tested: Amorphous 70/30 mol% Li2S‐P2S5, polycrystalline β‐Li3PS4, and polycrystalline and single‐crystalline Li6La3ZrTaO12 garnet. The nature of lithium plating depends on the proximity of the current collector to defects such as surface cracks and on the current density. Lithium plating penetrates/infiltrates at defects, but only above a critical current density. Eventually, infiltration results in a short circuit between the current collector and the Li‐source (anode). These results do not depend on the electrolytes shear modulus and are thus not consistent with the Monroe–Newman model for “dendrites.” The observations suggest that Li‐plating in pre‐existing flaws produces crack‐tip stresses which drive crack propagation, and an electrochemomechanical model of plating‐induced Li infiltration is proposed. Lithium short‐circuits through solid electrolytes occurs through a fundamentally different process than through liquid electrolytes. The onset of Li infiltration depends on solid‐state electrolyte surface morphology, in particular the defect size and density.  相似文献   

11.
The ultrahigh thermoelectric performance of SnSe‐based single crystals has attracted considerable interest in their polycrystalline counterparts. However, the temperature‐dependent structural transition in SnSe‐based thermoelectric materials and its relationship with their thermoelectric performance are not fully investigated and understood. In this work, nanolaminar SnSe polycrystals are prepared and characterized in situ using neutron and synchrotron powder diffraction measurements at various temperatures. Rietveld refinement results indicate that there is a complete inter‐orthorhombic evolution from Pnma to Cmcm by a series of layer slips and stretches along the a‐ and b‐axes over a 200 K temperature range. This phase transition leads to drastic enhancement of the carrier concentration and phonon scattering above 600 K. Moreover, the unique nanolaminar structure effectively enhances the carrier mobility of SnSe. Their grain and layer boundaries further improve the phonon scattering. These favorable factors result in a high ZT of 1.0 at 773 K for pristine SnSe polycrystals. The thermoelectric performances of polycrystalline SnSe are further improved by p‐type and n‐type dopants (i.e., doped with Ag and SnCl2, respectively), and new records of ZT are achieved in Ag0.015Sn0.985Se (ZT of 1.3 at 773 K) and SnSe0.985Cl0.015 (ZT of 1.1 at 773 K) polycrystals.  相似文献   

12.
The critical challenges of Li‐O2 batteries lie in sluggish oxygen redox kinetics and undesirable parasitic reactions during the oxygen reduction reaction and oxygen evolution reaction processes, inducing large overpotential and inferior cycle stability. Herein, an elaborately designed 3D hierarchical heterostructure comprising NiCo2S4@NiO core–shell arrays on conductive carbon paper is first reported as a freestanding cathode for Li‐O2 batteries. The unique hierarchical array structures can build up multidimensional channels for oxygen diffusion and electrolyte impregnation. A built‐in interfacial potential between NiCo2S4 and NiO can drastically enhance interfacial charge transfer kinetics. According to density functional theory calculations, intrinsic LiO2‐affinity characteristics of NiCo2S4 and NiO play an importantly synergistic role in promoting the formation of large peasecod‐like Li2O2, conducive to construct a low‐impedance Li2O2/cathode contact interface. As expected, Li‐O2 cells based on NiCo2S4@NiO electrode exhibit an improved overpotential of 0.88 V, a high discharge capacity of 10 050 mAh g?1 at 200 mA g?1, an excellent rate capability of 6150 mAh g?1 at 1.0 A g?1, and a long‐term cycle stability under a restricted capacity of 1000 mAh g?1 at 200 mA g?1. Notably, the reported strategy about heterostructure accouplement may pave a new avenue for the effective electrocatalyst design for Li‐O2 batteries.  相似文献   

13.
The charge transfer kinetics between a lithium metal electrode and an inorganic solid electrolyte is of key interest to assess the rate capability of future lithium metal solid state batteries. In an in situ microelectrode study run in a scanning electron microscope, it is demonstrated that—contrary to the prevailing opinion—the intrinsic charge transfer resistance of the Li|Li6.25Al0.25La3Zr2O12 (LLZO) interface is in the order of 10?1 Ω cm2 and thus negligibly small. The corresponding high exchange current density in combination with the single ion transport mechanism (t+ ≈ 1) of the inorganic solid electrolyte enables extremely fast plating kinetics without the occurrence of transport limitations. Local plating rates in the range of several A cm?2 are demonstrated at defect free and chemically clean Li|LLZO interfaces. Practically achievable current densities are limited by lateral growth of lithium along the surface as well as electro‐chemo‐mechanical‐induced fracture of the solid electrolyte. In combination with the lithium vacancy diffusion limitation during electrodissolution, these morphological instabilities are identified as the key fundamental limitations of the lithium metal electrode for solid‐state batteries with inorganic solid electrolytes.  相似文献   

14.
Solid‐state electrolytes are widely anticipated to enable the revival of high energy density and safe metallic Li batteries, however, their lower ionic conductivity at room temperature, stiff interfacial contact, and severe polarization during cycling continue to pose challenges in practical applications. Herein, a dual‐composite concept is applied to the design of a bilayer heterostructure solid electrolyte composed of Li+ conductive garnet nanowires (Li6.75La3Zr1.75Nb0.25O12)/polyvinylidene fluoride‐co‐hexafluoropropylene (PVDF‐HFP) as a tough matrix and modified metal organic framework particles/polyethylene oxide/PVDF‐HFP as an interfacial gel. The integral ionic conductivity of the solid electrolyte reaches 2.0 × 10?4 S cm?1 at room temperature. In addition, a chemically/electrochemically stable interface is rapidly formed, and Li dendrites are well restrained by a robust inorganic shield and matrix. As a result, steady Li plating/stripping for more than 1700 h at 0.25 mA cm?2 is achieved. Solid‐state batteries using this bilayer heterostructure solid electrolyte deliver promising battery performance (efficient capacity output and cycling stability) at ambient temperature (25 °C). Moreover, the pouch cells exhibit considerable flexibility in service and unexpected endurance under a series of extreme abuse tests including hitting with a nail, burning, immersion under water, and freezing in liquid nitrogen.  相似文献   

15.
In organic solar cells (OSCs), the energy of the charge‐transfer (CT) complexes at the donor–acceptor interface, E CT, determines the maximum open‐circuit voltage (V OC). The coexistence of phases with different degrees of order in the donor or the acceptor, as in blends of semi‐crystalline donors and fullerenes in bulk heterojunction layers, influences the distribution of CT states and the V OC enormously. Yet, the question of how structural heterogeneities alter CT states and the V OC is seldom addressed systematically. In this work, we combine experimental measurements of vacuum‐deposited rubrene/C60 bilayer OSCs, with varying microstructure and texture, with density functional theory calculations to determine how relative molecular orientations and extents of structural order influence E CT and V OC. We find that varying the microstructure of rubrene gives rise to CT bands with varying energies. The CT band that originates from crystalline rubrene lies up to ≈0.4 eV lower in energy compared to the one that arises from amorphous rubrene. These low‐lying CT states contribute strongly to V OC losses and result mainly from hole delocalization in aggregated rubrene. This work points to the importance of realizing interfacial structural control that prevents the formation of low E CT configurations and maximizes V OC.  相似文献   

16.
Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0.8Sr0.2MnO3?y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material. The LSM is Mn? O? M bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g?1 at 1 C (260 mA g?1) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g?1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries.  相似文献   

17.
Grain or phase boundaries play a critical role in the carrier and phonon transport in bulk thermoelectric materials. Previous investigations about controlling boundaries primarily focused on the reducing grain size or forming nanoinclusions. Herein, liquid phase compaction method is first used to fabricate the Yb‐filled CoSb3 with excess Sb content, which shows the typical feature of low‐angle grain boundaries with dense dislocation arrays. Seebeck coefficients show a dramatic increase via energy filtering effect through dislocation arrays with little deterioration on the carrier mobility, which significantly enhances the power factor over a broad temperature range with a high room‐temperature value around 47 μW cm?2 K?1. Simultaneously, the lattice thermal conductivity could be further suppressed via scattering phonons via dense dislocation scattering. As a result, the highest average figure of merit ZT of ≈1.08 from 300 to 850 K could be realized, comparable to the best reported result of single or triple‐filled Skutterudites. This work clearly points out that low‐angle grain boundaries fabricated by liquid phase compaction method could concurrently optimize the electrical and thermal transport properties leading to an obvious enhancement of both power factor and ZT .  相似文献   

18.
Fast ionic conductors constitute a family of materials exhibiting high values of the ionic conductivity while their crystal structure remains rather rigid. Perovskite‐like compounds are known to be good ionic conductors with applications as solid electrolytes. In hybrid halide perovskites both intrinsic (native) and extrinsic defect migration are regarded to occur. Ion diffusivity analysis is inherently ambiguous in all‐solid‐state configurations because of the multicomponent environment. Here, a liquid electrolyte in contact to the perovskite material forms a reservoir of Li+ that is forced to intercalate and migrate within the perovskite electrode. This approach decouples different contributions to transport in such a way that ion diffusion kinetics is easily accessible by means of impedance methods. The room‐temperature chemical diffusion coefficient of lithium ion within the perovskite lattice exhibits values as high as D μ ≈ 10?7 cm2 s?1, which implies conductivities within the range of 10?3 Ω?1 cm?1 for highly lithiated electrodes. This confirms the superionic intrinsic property of organohalide perovskites from a direct and unambiguous measurement that does not rely upon simulation tools.  相似文献   

19.
Ceramic Li7La3Zr2O12 garnet materials are promising candidates for the electrolytes in solid state batteries due to their high conductivity and structural stability. In this paper, the existence of “polyamorphism” leading to various glass‐type phases for Li‐garnet structure besides the known crystalline ceramic ones is demonstrated. A maximum in Li‐conductivity exists depending on a frozen thermodynamic glass state, as exemplified for thin film processing, for which the local near range order and bonding unit arrangement differ. Through processing temperature change, the crystallization and evolution through various amorphous and biphasic amorphous/crystalline phase states can be followed for constant Li‐total concentration up to fully crystalline nanostructures. These findings reveal that glass‐type thin film Li‐garnet conductors exist for which polyamorphism can be used to tune the Li‐conductivity being potential new solid state electrolyte phases to avoid Li‐dendrite formation (no grain boundaries) for future microbatteries and large‐scale solid state batteries.  相似文献   

20.
In this work, different from the commonly explored strategy of incorporating a smaller cation, MA+ and Cs+ into FAPbI3 lattice to improve efficiency and stability, it is revealed that the introduction of phenylethylammonium iodide (PEAI) into FAPbI3 perovksite to form mixed cation FAxPEA1–xPbI3 can effectively enhance both phase and ambient stability of FAPbI3 as well as the resulting performance of the derived devices. From our experimental and theoretical calculation results, it is proposed that the larger PEA cation is capable of assembling on both the lattice surface and grain boundaries to form quais‐3D perovskite structures. The surrounding of PEA+ ions at the crystal grain boundaries not only can serve as molecular locks to tighten FAPbI3 domains but also passivate the surface defects to improve both phase and moisture stablity. Consequently, a high‐performance (PCE:17.7%) and ambient stable FAPbI3 solar cell could be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号