共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrathin and Porous Ni3S2/CoNi2S4 3D‐Network Structure for Superhigh Energy Density Asymmetric Supercapacitors 下载免费PDF全文
Weidong He Chenggang Wang Huiqiao Li Xiaolong Deng Xijin Xu Tianyou Zhai 《Liver Transplantation》2017,7(21)
3D‐networked, ultrathin, and porous Ni3S2/CoNi2S4 on Ni foam (NF) is successfully designed and synthesized by a simple sulfidation process from 3D Ni–Co precursors. Interestingly, the edge site‐enriched Ni3S2/CoNi2S4/NF 3D‐network is realized by the etching‐like effect of S2? ions, which made the surfaces of Ni3S2/CoNi2S4/NF with a ridge‐like feature. The intriguing structural/compositional/componental advantages endow 3D‐networked‐free‐standing Ni3S2/CoNi2S4/NF electrodes better electrochemical performance with specific capacitance of 2435 F g?1 at a current density of 2 A g?1 and an excellent rate capability of 80% at 20 A g?1. The corresponding asymmetric supercapacitor achieves a high energy density of 40.0 W h kg?1 at an superhigh power density of 17.3 kW kg?1, excellent specific capacitance (175 F g?1 at 1A g?1), and electrochemical cycling stability (92.8% retention after 6000 cycles) with Ni3S2/CoNi2S4/NF as the positive electrode and activated carbon/NF as the negative electrode. Moreover, the temperature dependences of cyclic voltammetry curve polarization and specific capacitances are carefully investigated, and become more obvious and higher, respectively, with the increase of test temperature. These can be attributed to the components' synergetic effect assuring rich redox reactions, high conductivity as well as highly porous but robust architectures. This work provides a general, low‐cost route to produce high performance electrode materials for portable supercapacitor applications on a large scale. 相似文献
2.
NiCo2S4 Nanosheets Grown on Nitrogen‐Doped Carbon Foams as an Advanced Electrode for Supercapacitors 下载免费PDF全文
To push the energy density limit of supercapacitors, a new class of electrode materials with favorable architectures is strongly needed. Binary metal sulfides hold great promise as an electrode material for high‐performance energy storage devices because they offer higher electrochemical activity and higher capacity than mono‐metal sulfides. Here, the rational design and fabrication of NiCo2S4 nanosheets supported on nitrogen‐doped carbon foams (NCF) is presented as a novel flexible electrode for supercapacitors. A facile two‐step method is developed for growth of NiCo2S4 nanosheets on NCF with robust adhesion, involving the growth of Ni‐Co precursor and subsequent conversion into NiCo2S4 nanosheets through sulfidation process. Benefiting from the compositional features and 3D electrode architectures, the NiCo2S4/NCF electrode exhibits greatly improved electrochemical performance with ultrahigh capacitance (877 F g?1 at 20 A g?1) and excellent cycling stability. Moreover, a binder‐free asymmetric supercapacitor device is also fabricated by using NiCo2S4/NCF as the positive electrode and ordered mesoporous carbon (OMC)/NCF as the negative electrode; this demonstrates high energy density (≈45.5 Wh kg?1 at 512 W kg?1). 相似文献
3.
4.
Hydrogen (H2) has been deemed as the most promising and valuable alternative to nonrenewable fossil fuels. Photocatalytic and electrocatalytic water splitting are considered to be the most efficient and environmentally friendly approaches for the sustainable H2 evolution reaction (HER). Graphene with a 3D framework has been utilized for the HER due to its unique structure and properties, including its hierarchical network, large specific surface area, diverse pore distribution, outstanding light absorption ability, and excellent electrical conductivity. The large specific surface area and hierarchically porous structure of 3D graphene can not only maximize the exposure of active sites but also promote electron transfer and gas product diffusion. In addition, the free‐standing 3D graphene monolith is easily recycled compared with powder phase support, which can prevent the loss of active catalysts. By making full use of the aforementioned merits, 3D graphene‐based composite materials show great promise as high‐performance catalysts toward photocatalytic and electrocatalytic HER. In this review, recent advances in fabricating 3D graphene‐based composite materials and their applications in both photocatalytic and electrocatalytic HER are summarized and discussed. Furthermore, the current challenges and future vision associated with the design, fabrication, and integration of 3D graphene‐based composite materials toward HER are put forward. 相似文献
5.
Geon‐Hyoung An John Hong Sangyeon Pak Yuljae Cho Sanghyo Lee Bo Hou SeungNam Cha 《Liver Transplantation》2020,10(3)
Recent supercapacitors show a high power density with long‐term cycle life time in energy‐powering applications. A supercapacitor based on a single metal electrode accompanying multivalent cations, multiple charging/discharging kinetics, and high electrical conductivity is a promising energy‐storing system that replaces conventionally used oxide and sulfide materials. Here, a hierarchically nanostructured 2D‐Zn metal electrode‐ion supercapacitor (ZIC) is reported which significantly enhances the ion diffusion ability and overall energy storage performance. Those nanostructures can also be successfully plated on various flat‐type and fiber‐type current collectors by a controlled electroplating method. The ZIC exhibits excellent pseudocapacitive performance with a high energy density of 208 W h kg?1 and a power density from 500 W kg?1, which are significantly higher than those of previously reported supercapacitors with oxide and sulfide materials. Furthermore, the fiber‐type ZIC also shows high energy‐storing performance, outstanding mechanical flexibility, and waterproof characteristics, without any significant capacitance degradation during bending tests. These results highlight the promising possibility of nanostructured 2D Zn metal electrodes with the controlled electroplating method for future energy storage applications. 相似文献
6.
7.
Leyla Najafi Sebastiano Bellani Reinier Oropesa‐Nuñez Alberto Ansaldo Mirko Prato Antonio Esau Del Rio Castillo Francesco Bonaccorso 《Liver Transplantation》2018,8(16)
2D transition metal‐dichalcogenides are emerging as efficient and cost‐effective electrocatalysts for the hydrogen evolution reaction (HER). However, only the edge sites of their trigonal prismatic phase show HER‐electrocatalytic properties, while the basal plane, which is absent of defective/unsaturated sites, is inactive. Herein, the authors tackle the key challenge of increasing the number of electrocatalytic sites by designing and engineering heterostructures composed of single‐/few‐layer MoSe2 flakes and carbon nanomaterials (graphene or single‐wall carbon nanotubes) produced by solution processing. The electrochemical coupling between the materials that comprise the heterostructure effectively enhances the HER‐electrocatalytic activity of the native MoSe2 flakes. The optimization of the mass loading of MoSe2 flakes and their electrode assembly via monolithic heterostructure stacking provides a cathodic current density of 10 mA cm?2 at overpotential of 100 mV, a Tafel slope of 63 mV dec?1, and an exchange current density (j0) of 0.203 µA cm?2. In addition, thermal and chemical treatments are exploited to texturize the basal planes of the MoSe2 flakes (through Se‐vacancies creation) and to achieve in situ semiconducting‐to‐metallic phase conversion, respectively, thus they activate new HER‐electrocatalytic sites. The as‐engineered electrodes show a 4.8‐fold enhancement of j0 and a decrease in the Tafel slope to 54 mV dec?1. 相似文献
8.
Bingyige Pan Li Bai Cheng‐Min Hu Xinping Wang Wei‐Shi Li Fu‐Gang Zhao 《Liver Transplantation》2020,10(18)
To overcome the low energy density bottleneck of graphene‐based supercapacitors and to organically endow them with high‐power density, ultralong‐life cycles, etc., one rational strategy that couple graphene sheets with multielectron, redox‐reversible, and structurally‐stable organic compounds. Herein, a graphene‐indanthrone (IDT) donor–π–acceptor heterojunction is conceptualized for efficient and smooth 6H+/6e? transfers from pseudocapacitive IDT molecules to electrochemical double‐layer capacitive graphene scaffolds. To construct this, water‐processable graphene oxide (GO) is employed as a graphene precursor, and to in situ exfoliate IDT industrial dyestuff, followed by a hydrothermally‐induced reduction toward GO and self‐assembly between reduced GO (rGO) donors (D) and IDT acceptors (A), affording rGO‐π‐IDT D–A heterojunctions. Electrochemical tests indicate that rGO‐π‐IDT heterojunctions deliver a gravimetric capacitance of 535.5 F g?1 and an amplified volumetric capacitance of 685.4 F cm?3. The assembled flexible all‐solid‐state supercapacitor yields impressive volumetric energy densities of 31.3 and 25.1 W h L?1, respectively, at low and high power densities of 767 and 38 554 W L?1, while exhibiting an exceptional rate capability, cycling stability, and enduring mechanically‐challenging bending and distortions. The concept and methodology may open up opportunities for other two‐dimensional materials and other energy‐related devices. 相似文献
9.
Wenwen Liu Maiwen Zhang Matthew Li Brenda Li Wenyao Zhang Gaoran Li Meiling Xiao Jianbing Zhu Aiping Yu Zhongwei Chen 《Liver Transplantation》2020,10(8)
Micro‐supercapacitors (MSCs) as a new class of energy storage devices have attracted great attention due to their unique merits. However, the narrow operating voltage, slow frequency response, and relatively low energy density of MSCs are still insufficient. Therefore, an effective strategy to improve their electrochemical performance by innovating upon the design from various aspects remains a huge challenge. Here, surface and structural engineering by downsizing to quantum dot scale, doping heteroatoms, creating more structural defects, and introducing rich functional groups to two dimensional (2D) materials is employed to tailor their physicochemical properties. The resulting nitrogen‐doped graphene quantum dots (N‐GQDs) and molybdenum disulfide quantum dots (MoS2‐QDs) show outstanding electrochemical performance as negative and positive electrode materials, respectively. Importantly, the obtained N‐GQDs//MoS2‐QDs asymmetric MSCs device exhibits a large operating voltage up to 1.5 V (far exceeding that of most reported MSCs), an ultrafast frequency response (with a short time constant of 0.087 ms), a high energy density of 0.55 mWh cm?3, and long‐term cycling stability. This work not only provides a novel concept for the design of MSCs with enhanced performance but also may have broad application in other energy storage and conversion devices based on QDs materials. 相似文献
10.
Wenzhi Tian Baojuan Xi Zhenyu Feng Haibo Li Jinkui Feng Shenglin Xiong 《Liver Transplantation》2019,9(36)
Lithium‐sulfur batteries (LSBs) have been regarded as a competitive candidate for next‐generation electrochemical energy‐storage technologies due to their merits in energy density. The sluggish redox kinetics of the electrochemistry and the high solubility of polysulfides during cycling result in insufficient sulfur utilization, severe polarization, and poor cyclic stability. Herein, sulfiphilic few‐layered MoSe2 nanoflakes decorated rGO (MoSe2@rGO) hybrid has been synthesized through a facile hydrothermal method and for the first time, is used as a conceptually new‐style sulfur host for LSBs. Specifically, MoSe2@rGO not only strongly interacts with polysulfides but also dynamically strengthens polysulfide redox reactions. The polarization problem is effectively alleviated by relying on the sulfiphilic MoSe2. Moreover, MoSe2@rGO is demonstrated to be beneficial for the fast nucleation and uniform deposition of Li2S, contributing to the high discharge capacity and good cyclic stability. A high initial capacity of 1608 mAh g?1 at 0.1 C, a slow decay rate of 0.042% per loop at 0.25 C, and a high reversible capacity of 870 mAh g?1 with areal sulfur loading of 4.2 mg cm?2 at 0.3 C are obtained. The concept of introducing sulfiphilic transition‐metal selenides into the LSBs system can stimulate engineering of novel architectures with enhanced properties for various energy‐storage devices. 相似文献
11.
Wearable High‐Performance Supercapacitors Based on Silver‐Sputtered Textiles with FeCo2S4–NiCo2S4 Composite Nanotube‐Built Multitripod Architectures as Advanced Flexible Electrodes 下载免费PDF全文
Jian Zhu Shaochun Tang Juan Wu Xiling Shi Baogang Zhu Xiangkang Meng 《Liver Transplantation》2017,7(2)
To achieve high‐performance wearable supercapacitors (SCs), a new class of flexible electrodes with favorable architectures allowing large porosity, high conductivity, and good mechanical stability is strongly needed. Here, this study reports the rational design and fabrication of a novel flexible electrode with nanotube‐built multitripod architectures of ternary metal sulfides' composites (FeCo2S4–NiCo2S4) on a silver‐sputtered textile cloth. Silver sputtering is applicable to almost all kinds of textiles, and S2? concentration is optimized during sulfidation process to achieve such architectures and also a complete sulfidation assuring high conductivity. New insights into concentration‐dependent sulfidation mechanism are proposed. The additive‐free FeCo2S4–NiCo2S4 electrode shows a high specific capacitance of 1519 F g?1 at 5 mA cm?2 and superior rate capability (85.1% capacitance retention at 40 mA cm?2). All‐solid‐state SCs employing these advanced electrodes deliver high energy density of 46 W h kg?1 at 1070 W kg?1 as well as achieve remarkable cycling stability retaining 92% of initial capacitance after 3000 cycles at 10 mA cm?2, and outstanding reliability with no capacitance degradation under large twisting. These are attributed to the components' synergy assuring rich redox reactions, high conductivity as well as highly porous but robust architectures. An almost linear increase in capacitance with devices' area indicates possibility to meet various energy output requirements. This work provides a general, low‐cost route to wearable power sources. 相似文献
12.
13.
14.
15.
Recent Progress in Biomass‐Derived Electrode Materials for High Volumetric Performance Supercapacitors 下载免费PDF全文
Tremendous efforts have been spent on the development of electrical energy storage (EES) systems with high volumetric performance in the past few years due to the evergrowing demand of miniaturized, portable electronic devices, and electric vehicles. Among all the EES devices, supercapacitors with electrode materials derived from biosources have attracted special attention due to their eco‐friendliness, natural abundance, their intrinsic porous structures as well as their renewable and sustainable features. However, the relatively low packing densities make their specific volumetric capacitance intrinsically low, which has largely limited their further application in the supercapacitors. To address these issues, various promising approaches ranging from structural manufacture to compositional design are applied and significant breakthroughs are witnessed in recent years. In this progress report, key factors influencing the volumetric performance of biomass‐derived electrode materials are systematically discussed with a particular focus spanning from fundamental to operational aspects. This work provides insights into the development of high‐volumetric‐performance biomass‐derived supercapacitors by comprehensively summarizing recent advances in the rational structural design and fabrication. Perspectives regarding the future challenges and promising research directions on the design of next‐generation EES devices are also provided. 相似文献
16.
Muhammad Yousaf Yunsong Wang Yijun Chen Zhipeng Wang Attia Firdous Zeeshan Ali Nasir Mahmood Ruqiang Zou Shaojun Guo Ray P. S. Han 《Liver Transplantation》2019,9(30)
Freestanding composite structures with embedded transition metal dichalcogenides (TMDCs) as the active material are highly attractive in the development of advanced electrodes for energy storage devices. Most 3D electrodes consist of a bilayer design involving a core–shell combination. To further enhance the gravimetric and areal capacities, a 3D trilayer design is proposed that has MoSe2 as the TMDC sandwiched in‐between an inner carbon nanotube (CNT) core and an outer carbon layer to form a CNT/MoSe2/C framework. The CNT core creates interconnected pathways for the e?/Na+ conduction, while the conductive inert carbon layer not only protects the corrosive environment between the electrolyte and MoSe2 but also is fully tunable for an optimized Na+ storage. This unique heterostructure is synthesized via a solvothermal‐carbonization approach. Due to annealing under a confined structural configuration, MoSe2 interlayer spaces are expanded to facilitate a faster Na+ diffusion. It is shown that an ≈3 nm thick carbon layer yielded an optimized anode for a sodium‐ion battery. The 3D porosity of the heterostructure remains intact after an intense densification process to produce a high areal capacity of 4.0 mAh cm?2 and a high mass loading of 13.9 mg cm?2 with a gravimetric capacity of 347 mAh g?1 at 500 mA g?1 after 500 cycles. 相似文献
17.
18.
One‐dimensional (1D) hierarchical structures composed of Ni3S2 nanosheets grown on carbon nanotube (CNT) backbone (denoted as CNT@Ni3S2) are fabricated by a rational multi‐step transformation route. The first step involves coating the CNT backbone with a layer of silica to form CNT@SiO2, which serves as the substrate for the growth of nickel silicate (NiSilicate) nanosheets in the second step to form CNT@SiO2@NiSilicate core‐double shell 1D structures. Finally the as‐formed CNT@SiO2@NiSilicate 1D structures are converted into CNT‐supported Ni3S2 nanosheets via hydrothermal treatment in the presence of Na2S. Simultaneously the intermediate silica layer is eliminated during the hydrothermal treatment, leading to the formation of CNT@Ni3S2 nanostructures. Because of the unique hybrid nano‐architecture, the as‐prepared 1D hierarchical structure is shown to exhibit excellent performance in both supercapacitors and photocatalytic H2 production. 相似文献
19.
Hierarchical Zn–Co–S Nanowires as Advanced Electrodes for All Solid State Asymmetric Supercapacitors 下载免费PDF全文
A facile two‐step strategy is developed to design the large‐scale synthesis of hierarchical, unique porous architecture of ternary metal hydroxide nanowires grown on porous 3D Ni foam and subsequent effective sulfurization. The hierarchical Zn–Co–S nanowires (NWs) arrays are directly employed as an electrode for supercapacitors application. The as‐synthesized Zn–Co–S NWs deliver an ultrahigh areal capacity of 0.9 mA h cm?2 (specific capacity of 366.7 mA h g?1) at a current density of 3 mA cm?2, with an exceptional rate capability (≈227.6 mA h g?1 at a very high current density of 40 mA cm?2) and outstanding cycling stability (≈93.2% of capacity retention after 10 000 cycles). Most significantly, the assembled Zn–Co–S NWs//Fe2O3@reduced graphene oxide asymmetric supercapacitors with a wide operating potential window of ≈1.6 V yield an ultrahigh volumetric capacity of ≈1.98 mA h cm?3 at a current density of 3 mA cm?2, excellent energy density of ≈81.6 W h kg?1 at a power density of ≈559.2 W kg?1, and exceptional cycling performance (≈92.1% of capacity retention after 10 000 cycles). This general strategy provides an alternative to design the other ternary metal sulfides, making it facile, free‐standing, binder‐free, and cost‐effective ternary metal sulfide‐based electrodes for large‐scale applications in modern electronics. 相似文献
20.
Chemically Exfoliating Biomass into a Graphene‐like Porous Active Carbon with Rational Pore Structure,Good Conductivity,and Large Surface Area for High‐Performance Supercapacitors 下载免费PDF全文
Shi‐Yu Lu Meng Jin Yan Zhang Yu‐Bing Niu Jie‐Chang Gao Chang Ming Li 《Liver Transplantation》2018,8(11)
Active carbons have unique physicochemical properties, but their conductivities and surface to weight ratios are much poorer than graphene. A unique and facile method is innovated to chemically process biomass by “drilling” holes with H2O2 and exfoliating into graphene‐like nanosheets with HAc, followed by carbonization at a high temperature for highly graphitized activated carbon with greatly enhanced porosity, unique pore structure, high conductivity, and large surface area. This graphene‐like carbon exhibits extremely high specific capacitance (340 F g?1 at 0.5 A g?1) and high specific energy density (23.33 to 16.67 W h kg?1) with excellent rate capability and long cycling stability (remains 98% after 10 000 cycles), which is much superior to all reported carbons including graphene. Synthesis mechanism for deriving biomass into porous graphene‐like carbons is discussed in detail. The enhancement mechanism for the porous graphene‐like carbon electrode reveals that rationally designed meso‐ and macropores are very critical in porous electrode performance, which can network micropores for diffusion freeways, high conductivity, and high utilization. This work has universal significance in producing highly porous and conductive carbons from biomass including biowastes for various energy storage/conversion applications. 相似文献