首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Tumour cells produce and excrete to blood many substances which are present in the cell itself in trace amounts only. Our work has been aimed at the determination of changes in electric charge and in phospholipid composition of large intestine normal mucosa and colorectal cancer cells.Surface charge density of tumour unaffected mucosa and of tissue sections from tumours, was measured by electrophoresis. The measurements were carried out at various pH of solution. Membrane isoelectric point was determined by measuring its electric charge in function of pH as well as total positive charge at low pH and total negative charge at high pH. Qualitative and quantitative composition of phospholipids in the membrane was determined by HPLC. Four phospholipid classes were identified: PI, PS, PE and PC and their surface concentrations were determined.The electric charge calculated from phospholipid concentrations is by three orders of magnitude higher than that determined electrophoretically. It indicates that the groups present in the membrane surface are involved in equilibria in which the charge is neutralized.The electric charge calculated from phospholipid concentrations is by three orders of magnitude higher than that determined electrophoretically. It indicates that the groups present in the membrane surface are involved in equilibria in which the charge is neutralized.Tumour changes provoke an increase in surface charge density of large intestine membrane, whereas the content of individual phospholipids increased or decreased depending on a patient.  相似文献   

3.
The limits of maximizing the open‐circuit voltage Voc in solar cells based on poly[2,7‐(9,9‐didecylfluorene)‐alt‐5,5‐(4,7‐di‐2‐thienyl‐2,1,3‐benzothiadiazole)] (PF10TBT) as a donor using different fullerene derivatives as acceptor are investigated. Bulk heterojunction solar cells with PF10TBT and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) give a Voc over 1 V and a power conversion efficiency of 4.2%. Devices in which PF10TBT is blended with fullerene bisadduct derivatives give an even higher Voc, but also a strong decrease in short circuit current (Jsc). The higher Voc is attributed to the higher LUMO of the acceptors in comparison to PCBM. By investigating the photophysics of PF10TBT:fullerene blends using near‐IR photo‐ and electroluminescence, time‐resolved photoluminescence, and photoinduced absorption we find that the charge transfer (CT) state is not formed efficiently when using fullerene bisadducts. Hence, engineering acceptor materials with a LUMO level that is as high as possible can increase Voc, but will only provide a higher power conversion efficiency, when the quantum efficiency for charge transfer is preserved. To quantify this, we determine the CT energy (ECT) and optical band gap (Eg), defined as the lowest first singlet state energy ES1 of either the donor or acceptor, for each of the blends and find a clear correlation between the free energy for photoinduced electron transfer and Jsc. We find that Eg ? qVoc > 0.6 eV is a simple, but general criterion for efficient charge generation in donor‐acceptor blends.  相似文献   

4.
Surface modulation via injection or extraction of charge carriers in microelectric devices has been used to tune the energy band alignment for desired electrical and optical properties, yet not well recognized in photocatalysis field. Here, taking semiconductor bismuth tantalum oxyhalides (Bi4TaO8X) as examples, chemically inactive molybdenum oxide (MoO3) with a large work function is introduced to qualitatively tune the properties of interfacial charges, achieving an evidently enhanced upward band bending and intensive built‐in electric field. Such a simple charge modulation exhibits a remarkable improvement in photocatalytic water oxidation, reaching an apparent quantum efficiency of 25% at the input wavelength of 420 nm. The validity and generality of surface charge modulating strategy are further demonstrated using other semiconductors (e.g., C3N4) and decorators (e.g., V2O5). The findings not only provide a promising strategy for rationally manipulating the interfacial built‐in electric field in photocatalysis but also pave the way to learn from microelectronic technologies to construct artificial photosynthesis systems for solar energy conversion.  相似文献   

5.
6.
Charge generation and charge decay are two essential factors that determine the surface charge density of a triboelectric nanogenerator (TENG). However, research mainly focuses on boosting charge generation, and little attention is paid to suppressing charge decay. Here, a strategy of suppressing charge decay, including the air breakdown and dielectric charge leakage, of TENG with high surface charge density (HCD-TENG) is proposed by utilizing a dual dielectric layer. A series of parameters of different dielectric materials are tested with the assistance of a charge excitation TENG (CE-TENG) to reveal the relationships between charge generation, air breakdown, and dielectric charge leakage in the atmospheric environment. Further, the phenomenon of dielectric charge leakage limiting the maximum output of TENG prior to air breakdown is observed for the first time. With the simultaneous suppression of the air breakdown and dielectric charge leakage, the output of TENG is enhanced to 2.2 mC m−2. This work not only provides new insight into the performance optimization and material selection of TENG, but also provides significant guidance for obtaining high-output TENG in the future.  相似文献   

7.
Prolonged cold (2°C) treatment of winter rape plants ( Brassica napus L. var. oleifera L. cv. Górczański) markedly modified the pattern of leaf growth and brought about changes in the level of pyridine nucleotides already during the first few days of treatment. The NAD+, NADP+ and NADPH levels markedly increased but there was practically no effect on the NADH level. Changes in the respective nucleotide levels were reflected by changes in anabolic and catabolic reduction charges. The former increased by 70%, whereas the latter decreased by 44%. Alterations in pyridine nucleotide levels and the reduction charges are discussed in terms of possible mechanisms involved, as well as in terms of their role in plant adaptation to cold.  相似文献   

8.
Understanding the correlation between polymer aggregation, miscibility, and device performance is important to establish a set of chemistry design rules for donor polymers with nonfullerene acceptors (NFAs). Employing a donor polymer with strong temperature‐dependent aggregation, namely PffBT4T‐2OD [poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3″′‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2″′‐quaterthiophen‐5,5‐diyl)], also known as PCE‐11 as a base polymer, five copolymer derivatives having a different thiophene linker composition are blended with the common NFA O‐IDTBR to investigate their photovoltaic performance. While the donor polymers have similar optoelectronic properties, it is found that the device power conversion efficiency changes drastically from 1.8% to 8.7% as a function of thiophene content in the donor polymer. Results of structural characterization show that polymer aggregation and miscibility with O‐IDTBR are a strong function of the chemical composition, leading to different donor–acceptor blend morphology. Polymers having a strong tendency to aggregate are found to undergo fast aggregation prior to liquid–liquid phase separation and have a higher miscibility with NFA. These properties result in smaller mixed donor–acceptor domains, stronger PL quenching, and more efficient exciton dissociation in the resulting cells. This work indicates the importance of both polymer aggregation and donor–acceptor interaction on the formation of bulk heterojunctions in polymer:NFA blends.  相似文献   

9.
To determine the role of photon energy on charge generation in bulk heterojunction solar cells, the bias voltage dependence of photocurrent for excitation with photon energies below and above the optical band gap is investigated in two structurally related polymer solar cells. Charges generated in (poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′′]dithiophene)‐alt‐4,7‐(2,1,3‐benzothia­diazole)] (C‐PCPDTBT):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) solar cells via excitation of the low‐energy charge transfer (CT) state, situated below the optical band gap, need more voltage to be extracted than charges generated with excitation above the optical band gap. This indicates a lower effective binding energy of the photogenerated electrons and holes when the excitation is above the optical band gap than when excitation is to the bottom of the CT state. In blends of PCBM with the silicon‐analogue, poly[(4,4‐bis(2‐ethylhexyl)dithieno[3,2‐b:2,3d]silole)‐2,6‐diyl‐alt‐(2,1,3‐benzothiadiazole)‐4,7‐diyl] (Si‐PCPDTBT), there is no effect of the photon energy on the electric field dependence of the dissociation efficiency of the CT state. C‐PCPDTBT and Si‐PCPDTBT have very similar electronic properties, but their blends with PCBM differ in the nanoscale phase separation. The morphology is coarser and more crystalline in Si‐PCPDTBT:PCBM blends. The results demonstrate that the nanomorphological properties of the bulk heterojunction are important for determining the effective binding energy in the generation of free charges at the heterojunction.  相似文献   

10.
In order to detect the effect of the surface charge discreteness on the properties at the solid–liquid interface, a molecular dynamics simulation model considering the vibration of wall atoms was used to investigate the performance of ion and water under different charge distributions. Through the comparison between simulation results and the theoretical prediction, it was found that, with the increasing degree of discreteness, much more counterions were attracted to the surface. These ions formed a denser accumulating layer which was located much nearer to the surface and caused charge inversion. The ions in this layer were non-hydrated or partially hydrated. When a voltage was applied across the nanochannel, this dense accumulating layer did not move unlike the ions near the uniformly charged surface. From the water density profiles obtained in nanochannels with different surface charge distributions, the influence of the surface charge discreteness on water distributions could be neglected.  相似文献   

11.
Direct conversion of mechanical energy into direct current (DC) by triboelectric nanogenerators (TENGs) is one of the desired features in terms of energy conversion efficiency. Although promising applications have been reported using the triboelectric effect, effective DC generating TENGs must be developed for practical purposes. Here, it is reported that continuous DC generation within a TENG itself, without any circuitry, can be achieved by triggering air breakdown via triboelectrification. It is demonstrated that DC generation occurs in combination with i) charge accumulation to generate air breakdown, ii) incident discharge (microdischarge), and iii) conveyance of charges to make the device sustainable. 10.5 mA m?2 of output current and 10.6 W m?2 of output power at 33 MΩ load resistance are achieved. Compared to the best DC generating TENGs ever reported, the TENG in this present study generates about 20 times larger root‐mean square current density.  相似文献   

12.
In studies of gating currents of rabbit cardiac Ca channels expressed as α1C2a or α1C2a2δ subunit combinations in tsA201 cells, we found that long-lasting depolarization shifted the distribution of mobile charge to very negative potentials. The phenomenon has been termed charge interconversion in native skeletal muscle (Brum, G., and E. Ríos. 1987. J. Physiol. (Camb.). 387:489–517) and cardiac Ca channels (Shirokov, R., R. Levis, N. Shirokova, and E. Ríos. 1992. J. Gen. Physiol. 99:863–895). Charge 1 (voltage of half-maximal transfer, V1/2 ≃ 0 mV) gates noninactivated channels, while charge 2 (V1/2 ≃ −90 mV) is generated in inactivated channels. In α1C2a cells, the available charge 1 decreased upon inactivating depolarization with a time constant τ ≃ 8, while the available charge 2 decreased upon recovery from inactivation (at −200 mV) with τ ≃ 0.3 s. These processes therefore are much slower than charge movement, which takes <50 ms. This separation between the time scale of measurable charge movement and that of changes in their availability, which was even wider in the presence of α2δ, implies that charges 1 and 2 originate from separate channel modes. Because clear modal separation characterizes slow (C-type) inactivation of Na and K channels, this observation establishes the nature of voltage-dependent inactivation of L-type Ca channels as slow or C-type. The presence of the α2δ subunit did not change the V1/2 of charge 2, but sped up the reduction of charge 1 upon inactivation at 40 mV (to τ ≃ 2 s), while slowing the reduction of charge 2 upon recovery (τ ≃ 2 s). The observations were well simulated with a model that describes activation as continuous electrodiffusion (Levitt, D. 1989. Biophys. J. 55:489–498) and inactivation as discrete modal change. The effects of α2δ are reproduced assuming that the subunit lowers the free energy of the inactivated mode.  相似文献   

13.
Excitation energy trapping and charge separation in Photosystem II were studied by kinetic analysis of the fast photovoltage detected in membrane fragments from peas with picosecond excitation. With the primary quinone acceptor oxidized the photovoltage displayed a biphasic rise with apparent time constants of 100–300 ps and 550±50 ps. The first phase was dependent on the excitation energy whereas the second phase was not. We attribute these two phases to trapping (formation of P-680+ Phe-) and charge stabilization (formation of P-680+ QA -), respectively. A reversibility of the trapping process was demonstrated by the effect of the fluorescence quencher DNB and of artificial quinone acceptors on the apparent rate constants and amplitudes. With the primary quinone acceptor reduced a transient photoelectric signal was observed and attributed to the formation and decay of the primary radical pair. The maximum concentration of the radical pair formed with reduced QA was about 30% of that measured with oxidized QA. The recombination time was 0.8–1.2 ns.The competition between trapping and annihilation was estimated by comparison of the photovoltage induced by short (30 ps) and long (12 ns) flashes. These data and the energy dependence of the kinetics were analyzed by a reversible reaction scheme which takes into account singlet-singlet annihilation and progressive closure of reaction centers by bimolecular interaction between excitons and the trap. To put on firmer grounds the evaluation of the molecular rate constants and the relative electrogenicity of the primary reactions in PS II, fluorescence decay data of our preparation were also included in the analysis. Evidence is given that the rates of radical pair formation and charge stabilization are influenced by the membrane potential. The implications of the results for the quantum yield are discussed.Abbreviations DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNB m-dinitrobenzene - PPBQ phenyl-p-benzoquinone - PS I photosystem I of green plants - PS II photosystem II of green plants - PSU photosynthetic unit - P-680 primary donor of PS II - Phe intermediary pheophytin acceptor of PS II - QA primary quinone acceptor of PS II - RC reaction center  相似文献   

14.
No changes in metabolism of adenosine phosphates as a function of short day induction were detected in cotyledons of Pharbitis nil Chois strain Violet. A gradual increase in ATP level was detected throughout the dark period in plumules. A rapid decline of ATP pool size was observed in induced plumules shortly after floral induction. The decline occurred close to the 14th hour of the dark period, 1 to 1.5 h after the dark period length required for a 90% flowering response, which is thought to be the minimum time required for transport of the floral stimulus (and assimilates) from the induced cotyledons to the plumule. Transport of the major adenylates from the cotyledons was verified using [14C]-adenine. Estimates of the amount, and rate, of adenylate transport suggest that the cotyledons could be an important source of adenylates to re-establish the ATP pool size in evoked plumules.  相似文献   

15.
The use of fullerenes with two or more adducts as acceptors has been recently shown to enhance the performance of bulk‐heterojunction solar cells using poly(3‐hexylthiophene) (P3HT) as the donor. The enhancement is caused by a substantial increase in the open‐circuit voltage due to a rise in the fullerene lowest unoccupied molecular orbital (LUMO) level when going from monoadducts to multiadducts. While the increase in the open‐circuit voltage is obtained with many different polymers, most polymers other than P3HT show a substantially reduced photocurrent when blended with fullerene multiadducts like bis‐PCBM (bis adduct of Phenyl‐C61‐butyric acid methyl ester) or the indene C60 bis‐adduct ICBA. Here we investigate the reasons for this decrease in photocurrent. We find that it can be attributed partly to a loss in charge generation efficiency that may be related to the LUMO‐LUMO and HOMO‐HOMO (highest occupied molecular orbital) offsets at the donor‐acceptor heterojunction, and partly to reduced charge carrier collection efficiencies. We show that the P3HT exhibits efficient collection due to high hole and electron mobilities with mono‐ and multiadduct fullerenes. In contrast the less crystalline polymer Poly[[9‐(1‐octylnonyl)‐9H‐carbazole‐2,7‐diyl]‐2,5‐thiophenediyl‐2,1,3‐benzothiadiazole‐4,7‐diyl‐2,5‐thiophenediyl (PCDTBT) shows inefficient charge carrier collection, assigned to low hole mobility in the polymer and low electron mobility when blended with multiadduct fullerenes.  相似文献   

16.
Charge‐transfer (CT) state electroluminescence is investigated in several polymer:fullerene bulk heterojunction solar cells. The ideality factor of the electroluminescence reveals that the CT emission in polymer:fullerene solar cells originates from free‐carrier bimolecular recombination at the donor‐acceptor interface, rather than a charge‐trap‐mediated process. The fingerprint of the presence of nonradiative trap‐assisted recombination, a voltage‐dependent CT electroluminescence quantum efficiency, is only observed for the P3HT:PCBM system, which is explained by a reduction of the competing bimolecular recombination rate. These results are in agreement with measurements of the illumination‐intensity dependence of the open‐circuit voltage.  相似文献   

17.
A colloid titration method was used to determine the surface charge of cells of a human colon adenocarcinoma cell line WiDr; 6.2±0.8×108 charges per cell were found. The apparent surface charge density was calculated using the cell surface area estimated by a Coulter counter. Alternatively, the lower limit of the cell surface area was estimated by visible microscopy. The same procedure was applied for human skin fibroblasts, resulting in the value 9.4±1.1×108 charges per cell. This is significantly higher (p<0.05) than that of WiDr cells, presumably because of the different size of the cells. According to the estimations using the Coulter counter, the median diameter was higher in the case of skin fibroblasts. Fluorimetric titration of the fluorescent probe U-6 was used to estimate the interfacial potential of the WiDr cells. A shift of the titration curve of the U-6 probe toward higher pH values compared to that in pure buffer solutions was found in the presence of the WiDr cells. From the displacement of the midpoints of the titration curves, the interfacial potential of the WiDr cells was found to be about−35.8 mV. Incubation of the cells at two different pH values (7.4 and 6.8) did not result in any significant modification of the electrostatic properties of the cells under the experimental conditions of the present study. Electron microscopy revealed a distinct difference in the surface morphology of the WiDr cells compared to human skin fibroblasts. Numerous microvilli present on the surface of WiDr cells indicated marked uncertainties in cell surface area estimations. This gives large uncertainties in the real surface charge densities of cells.  相似文献   

18.
A new methodical approach is proposed for precise determination (better than ± 2%) of the quantum yield of charge separation in the reaction centers of purple bacteria; for Rhodospirillum rubrum this value proves to be 93.5%.  相似文献   

19.
Charge Motion during the Photocycle of Bacteriorhodopsin   总被引:2,自引:0,他引:2  
The function of bacteriorhodopsin in Halobacterium salinarum is to pump protons from the internal side of the plasma membrane to the external after light excitation, thereby building up electrochemical energy. This energy is transduced into biological energy forms. This review deals with one of the methods elaborated for recording the charge transfer inside the protein. In this method the current produced in oriented purple membrane containing bacteriorhodopsin is measured. It is shown that this method might be applied not only to correlate charge motion with the photocycle reactions but also for general problems like effect of water, electric field, and different ions and buffers for the functioning of proteins.  相似文献   

20.
Critical mixtures of aqueous solutions os polymers separate into two or more immiscible phases. Particulate materials distribute in such phase systems generally between one bulk phase and the interface between bulk phases. The distribution is described by a simple partition law, and is qunatitatively determined by, inter alia, the nature of the particle surface, particularly net electrical charge. The partition behaviour of various cells, native or modified by treatment with trypsin, neurominidase or maleic anhydride, correlate strongly with electrophoretic mobility. Partition behaviour and electrophoretic mobility are both dependent upon cell surface charge. Thus, in appropriate conditions, changes in surface charge may be registered as changes in partition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号