首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Notch signaling pathway is an evolutionarily conserved signaling mechanism and mutations in its components disrupt cell fate specification and embryonic development in many organisms. To analyze the in vivo role of the Notch3 gene in mice, we created a deletion allele by gene targeting. Embryos homozygous for this mutation developed normally and homozygous mutant adults were viable and fertile. We also examined whether we could detect genetic interactions during early embryogenesis between the Notch3 mutation and a targeted mutation of the Notch1 gene. Double homozygous mutant embryos exhibited defects normally observed in Notch1-deficient embryos, but we detected no obvious synergistic effects in the double mutants. These data demonstrate that the Notch3 gene is not essential for embryonic development or fertility in mice, and does not have a redundant function with the Notch1 gene during early embryogenesis.  相似文献   

2.
The phenotypes and genetic interactions associated with mutations in the Drosophila mastermind (mam) gene have implicated it as a component of the Notch signaling pathway. However, its function and site of action within many tissues requiring Notch signaling have not been thoroughly investigated. To address these questions, we have constructed truncated versions of the Mam protein that elicit dominant phenotypes when expressed in imaginal tissues under GAL4-UAS regulation. By several criteria, these effects appear to phenocopy loss of function for the Notch pathway. When expressed in the notum, truncated Mam results in failure of lateral inhibition within proneural clusters and perturbations in cell fate specification within the sensory organ precursor cell lineage. Expression in the wing is associated with vein thickening and margin defects, including nicking and bristle loss. The truncation-associated wing margin phenotypes are modified by mutations in Notch and Wg pathway genes and are correlated with depressed expression of wg, cut, and vg. These data support the idea that Mam truncations have lost key effector domains and therefore behave as dominant-negative proteins. Coexpression of Delta or an activated form of Notch suppresses the effects of the Mam truncation, suggesting that Mam can function upstream of ligand-receptor interaction in the Notch pathway. This system should prove useful for the investigation of the role of Mam within the Notch pathway.  相似文献   

3.
During neurogenesis in the ventral nerve cord of the Drosophila embryo, Notch signaling participates in the pathway that mediates asymmetric fate specification to daughters of secondary neuronal precursor cells. In the NB4-2 --> GMC-1 --> RP2/sib lineage, a well-studied neuronal lineage in the ventral nerve cord, Notch signaling specifies sib fate to one of the daughter cells of GMC-1. Notch mediates this process via Mastermind (Mam). Loss of function for mam, similar to loss of function for Notch, results in GMC-1 symmetrically dividing to generate two RP2 neurons. Loss of function for mam also results in a severe neurogenic phenotype. In this study, we have undertaken a functional analysis of the Mam protein. We show that while ectopic expression of a truncated Mam protein induces a dominant-negative neurogenic phenotype, it has no effect on asymmetric fate specification. This truncated Mam protein rescues the loss of asymmetric specification phenotype in mam in an allele-specific manner. We also show an interallelic complementation of loss-of-asymmetry defect. Our results suggest that Mam proteins might associate during the asymmetric specification of cell fates and that the N-terminal region of the protein plays a role in this process.  相似文献   

4.
The BAH genomic locus encodes three distinct proteins: junctin, humbug, and BAH. All three proteins share common exons, but differ significantly based upon the use of alternative terminal exons. The biological roles of BAH and humbug and their functional relationship to junctin remain unclear. To evaluate the role of BAH in vivo, the catalytic domain of BAH was specifically targeted such that the coding regions of junctin and humbug remained undisturbed. BAH null mice lack measurable BAH protein in several tissues, lack aspartyl beta-hydroxylase activity in liver preparations, and exhibit no hydroxylation of the epidermal growth factor (EGF) domain of clotting Factor X. In addition to reduced fertility in females, BAH null mice display several developmental defects including syndactyly, facial dysmorphology, and a mild defect in hard palate formation. The developmental defects present in BAH null mice are similar to defects observed in knock-outs and hypomorphs of the Notch ligand Serrate-2. In this work, beta-hydroxylation of Asp residues in EGF domains is demonstrated for a soluble form of a Notch ligand, human Jagged-1. These results along with recent reports that another post-translational modification of EGF domains in Notch gene family members (glycosylation by Fringe) alters Notch pathway signaling, lends credence to the suggestion that aspartyl beta-hydroxylation may represent another post-translational modification of EGF domains that can modulate Notch pathway signaling. Previous work has demonstrated increased levels of BAH in certain tumor tissues and a role for BAH in tumorigenesis has been proposed. The role of hydroxylase in tumor formation was tested directly by crossing BAH KO mice with an intestinal tumor model, APCmin mice. Surprisingly, BAH null/APCmin mice show a statistically significant increase in both intestinal polyp size and number when compared with BAH wild-type/APCmin controls. These results suggest that, in contrast to expectations, loss of BAH catalytic activity may promote tumor formation.  相似文献   

5.
The role of Notch signaling in general and presenilin in particular was analyzed during mouse somitogenesis. We visualize cyclical production of activated Notch (NICD) and establish that somitogenesis requires less NICD than any other tissue in early mouse embryos. Indeed, formation of cervical somites proceeds in Notch1; Notch2-deficient embryos. This is in contrast to mice lacking all presenilin alleles, which have no somites. Since Nicastrin-, Pen-2-, and APH-1a-deficient embryos have anterior somites without gamma-secretase, presenilin may have a gamma-secretase-independent role in somitogenesis. Embryos triple homozygous for both presenilin null alleles and a Notch allele that is a poor substrate for presenilin (N1(V-->G)) experience fortuitous cleavage of N1(V-->G) by another protease. This restores NICD, anterior segmentation, and bilateral symmetry but does not rescue rostral/caudal identities. These data clarify multiple roles for Notch signaling during segmentation and suggest that the earliest stages of somitogenesis are regulated by both Notch-dependent and Notch-independent functions of presenilin.  相似文献   

6.
7.
8.
Crumbs family proteins are apical transmembrane proteins with ancient roles in cell polarity. Mouse Crumbs2 mutants arrest at midgestation with abnormal neural plate morphology and a deficit of mesoderm caused by defects in gastrulation. We identified an ENU-induced mutation, wsnp, that phenocopies the Crumbs2 null phenotype. We show that wsnp is a null allele of Protein O-glucosyltransferase 1 (Poglut1), which encodes an enzyme previously shown to add O-glucose to EGF repeats in the extracellular domain of Drosophila and mammalian Notch, but the role of POGLUT1 in mammalian gastrulation has not been investigated. As predicted, we find that POGLUT1 is essential for Notch signaling in the early mouse embryo. However, the loss of mouse POGLUT1 causes an earlier and more dramatic phenotype than does the loss of activity of the Notch pathway, indicating that POGLUT1 has additional biologically relevant substrates. Using mass spectrometry, we show that POGLUT1 modifies EGF repeats in the extracellular domain of full-length mouse CRUMBS2. CRUMBS2 that lacks the O-glucose modification fails to be enriched on the apical plasma membrane and instead accumulates in the endoplasmic reticulum. The data demonstrate that CRUMBS2 is the target of POGLUT1 for the gastrulation epithelial-to-mesenchymal transitions (EMT) and that all activity of CRUMBS2 depends on modification by POGLUT1. Mutations in human POGLUT1 cause Dowling-Degos Disease, POGLUT1 is overexpressed in a variety of tumor cells, and mutations in the EGF repeats of human CRUMBS proteins are associated with human congenital nephrosis, retinitis pigmentosa and retinal degeneration, suggesting that O-glucosylation of CRUMBS proteins has broad roles in human health.  相似文献   

9.
A requirement for beta4galactosyltransferase-1 (beta4GalT-1) activity in the modulation of Notch signaling by the glycosyltransferase Fringe was previously identified in a mammalian co-culture assay. Notch signaling is necessary for the formation of somites in mammals. We therefore investigated the expression of eleven Notch pathway and somitogenic genes in E9.5 mouse embryos lacking beta4GalT-1. Four of these genes were altered in expression pattern or expression level. The Notch target genes Hes5 and Mesp2 were affected to some degree in all mutant embryos. The Notch ligand genes Dll1 and Dll3 were reduced or altered in expression in a significant proportion of mutants. While there were no differences in the number or morphology of somites in E9.5 B4galt1 null embryos, the number of lumbar vertebrae in mutant embryos differed from control littermates (P < or = 0.01). The subtlety of the in vivo phenotype may be due to redundancy since several B4galt genes related to B4galt1 are expressed during embryogenesis.  相似文献   

10.
Zhou X  Takatoh J  Wang F 《PloS one》2011,6(1):e16358
The Pik3c3 gene encodes an 887 amino acid lipid kinase, phosphoinositide-3-kinase class 3 (PIK3C3). PIK3C3 is known to regulate various intracellular membrane trafficking events. However, little is known about its functions during early embryogenesis in mammals. To investigate the function of PIK3C3 in vivo, we generated Pik3c3 null mice. We show here that Pik3c3 heterozygous are normal and fertile. In contrast, Pik3c3 homozygous mutants are embryonic lethal and die between E7.5 and E8.5 of embryogenesis. Mutant embryos are poorly developed with no evidence of mesoderm formation, and suffer from severely reduced cell proliferations. Cell proliferation defect is also evident in vitro, where mutant blastocysts in culture fail to give rise to typical colonies formed by inner cell mass. Electron microscopic analysis revealed that epiblast cells in mutant embryos appear normal, whereas the visceral endoderm cells contain larger vesicles inside the lipid droplets. Finally, we provide evidence that mTOR signaling is drastically reduced in Pik3c3 null embryos, which could be a major contributor to the observed proliferation and embryogenesis defects.  相似文献   

11.
Heparan sulfate (HS) regulates the activity of various ligands and is involved in molecular recognition events on the cell surface and in the extracellular matrix. Specific binding of HS to different ligand proteins depends on the sulfation pattern of HS. For example, the interaction between antithrombin and a particular 3-O sulfated HS motif is thought to modulate blood coagulation. However, a recent study of mice defective for this modification suggested that 3-O sulfation plays other biological roles. Here, we show that Drosophila melanogaster HS 3-O sulfotransferase-b (Hs3st-B), which catalyzes HS 3-O sulfation, is a novel component of the Notch pathway. Reduction of Hs3st-B function by transgenic RNA interference compromised Notch signaling, producing neurogenic phenotypes. We also show that levels of Notch protein on the cell surface were markedly decreased by loss of Hs3st-B. These findings suggest that Hs3st-B is involved in Notch signaling by affecting stability or intracellular trafficking of Notch protein.  相似文献   

12.
13.
The Notch signaling pathway plays a critical role during mammalian development. To bypass embryonic lethality associated with constitutive Notch1 signaling, we created transgenic mice with a floxed beta-geo/stop signal between a cytomegalo virus promoter and the constitutively active intracellular domain of Notch1 (IC-Notch1). IC-Notch1 is activated upon introduction of Cre recombinase and it is coexpressed with an enhanced green fluorescent protein or human placental alkaline phosphatase reporter. We created three IC-Notch1 transgenic mouse lines and crossed them to a general Cre deletor mouse line, pCX-Cre. The double transgenic IC-Notch1/pCX-Cre embryos have widespread expression of IC-Notch1 and reporters and die before 10.5 days of gestation. Morphological and histological analysis of the double transgenic embryos indicated growth arrest and various developmental defects, including lack of neural tube closure, disorganized somites, and disrupted vasculature. The conditional IC-Notch1 expressing transgenic mice provide a unique tool to investigate the Notch pathway using tissue-specific Cre mice and inducible Cre systems.  相似文献   

14.
15.
The Notch pathway comprises a signal transduction cascade required for the proper formation of multiple tissues during metazoan development. Originally described in Drosophila for its role in nervous system formation, the pathway has attracted much wider interest owing to its fundamental roles in a range of developmental and disease-related processes. Despite extensive analysis, Notch signaling is not completely understood and it appears that additional components of the pathway remain to be identified and characterized. Here, we describe a novel genetic strategy to screen for additional Notch pathway genes. The strategy combines partial loss of function for pathway activity with Enhancer-promoter (EP)-induced overexpression of random loci across the dorsoventral wing margin. Mastermind (Mam) is a nuclear component of the Notch signaling cascade. Using a GAL4-UAS-driven dominant-negative form of Mam, we created a genotype that exhibits a completely penetrant dominant wing-nicking phenotype. This phenotype was assayed for enhancement or suppression after outcrossing to several thousand EP lines. The screen identified known components or modifiers of Notch pathway function, as well as several potential new components. Our results suggest that a genetic screen that combines partial loss of function with random gene overexpression might be a useful strategy in the analysis of developmental pathways.  相似文献   

16.
Mammalian presenilins consist of two highly homologous proteins, PSEN1 and PSEN2, which share redundant activities in Notch processing and signaling. To bypass the early lethality of the Psen1- and Psen2-double (PSEN) null embryos, we used a human PSEN1 transgene to rescue the somite patterning defects in PSEN-null animals and to allow a determination of the function of presenilins in late embryogenesis. We report here that expression of the human PSEN1 transgene supported the survival of PSEN-null embryos to the perinatal stage. However, presenilin deficiency in the kidney led to severe nephrogenesis defects and virtually no comma- or S-shaped bodies, or mature glomeruli were formed. We document that the mesenchyme was induced which could further progress to renal vesicles in the PSEN-null kidney, indicating that the presenilins are not essential for the inductive interactions and mesenchyme to epithelium transition. However, renal vesicles failed to pattern to form proximal tubules and glomerular epithelium. A presenilin-dependent, signaling-competent form of Notch1 was detected in mesenchymal derivatives but not in the ureteric buds of wild-type mice. Consistent with an obligatory role of presenilins in Notch processing and activation, the active form of Notch1 and its downstream target Hesr1 were absent in the PSEN-null kidney. Importantly, sustained Notch1 signaling was required for the maintenance of Notch ligand Jag1 expression. These results identify presenilins as one determinant of renal vesicle patterning in the developing mouse kidney, and we hypothesize that they act through the Notch signaling pathway.  相似文献   

17.
18.
Intracellular retention of caveolin 1 in presenilin-deficient cells   总被引:2,自引:0,他引:2  
Mutations in genes encoding presenilins (PS1 and PS2) are responsible for the majority of early onset familial Alzheimer's disease. PS, a critical component of gamma-secretase, is responsible for the intramembranous cleavage of amyloid precursor protein and Notch. Other physiological functions have been assigned to PS without any clear identification of the mechanisms underlying these multiple biological roles. The early embryonic lethality of PS1 and PS2 double knock-out (PS1/2 null) mice prevents the evaluation of physiological roles of PS. To investigate new functions for presenilins, we performed a proteomic approach by using cells derived from PS1/2 null blastocysts and wild type controls. We identified a presenilin-dependent cell-surface binding of albumin. Binding of albumin depends on intact caveolae on the cellular surface. Abnormal caveolin 1 localization in PS1/2 null cells was associated with a loss of caveolae and an absence of caveolin 1 expression within lipid rafts. Expressing PS1 or PS2 but not the intracellular form of Notch1 in PS1/2 null cells restored normal caveolin 1 localization, demonstrating that presenilins are required for the subcellular trafficking of caveolin 1 independently from Notch activity. Despite an expression of both caveolin 1 and PS1 within lipid raft-enriched fractions after sucrose density centrifugation in wild type cells, no direct interaction between these two proteins was detected, implying that presenilins affect caveolin 1 trafficking in an indirect manner. We conclude that presenilins are required for caveolae formation by controlling transport of intracellular caveolin 1 to the plasma membrane.  相似文献   

19.
20.
Delta-like 3 (DLL3) is a member of the DSL family of Notch ligands in amniotes. In contrast to DLL1 and DLL4, the other Delta-like proteins in the mouse, DLL3 does not bind in trans to Notch and does not activate the receptor, but shows cis-interaction and cis-inhibitory properties on Notch signaling in vitro. Loss of the DSL protein DLL3 in the mouse results in severe somite patterning defects, which are virtually indistinguishable from the defects in mice that lack lunatic fringe (LFNG), a glycosyltransferase involved in modifying Notch signaling. Like LFNG, DLL3 is located within the trans-Golgi, however, its biochemical function is still unclear. Here, we show that i) both proteins interact, ii) epidermal growth factor like repeats 2 and 5 of DLL3 are O-fucosylated at consensus sites for POFUT1, and iii) further modified by FNG proteins in vitro. Embryos double homozygous for null mutations in Dll3 and Lfng are phenotypically indistinguishable from the single mutants supporting a potential common function. Mutation of the O-fucosylation sites in DLL3 does not disrupt the interaction of DLL3 with LFNG or full length Notch1or DLL1, and O-fucosylation-deficient DLL3 can still inhibit Notch in cis in vitro. However, in contrast to wild type DLL3, O-fucosylation-deficient DLL3 cannot compensate for the loss of endogenous DLL3 during somitogenesis in the embryo. Together our results suggest that the cis-inhibitory activity of DLL3 observed in cultured cells might not fully reflect its assumed essential physiological property, suggest that DLL3 and LFNG act together, and strongly supports that modification of DLL3 by O-linked fucose is essential for its function during somitogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号