首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu J  Bhatnagar D  Cleveland TE 《FEBS letters》2004,564(1-2):126-130
An 82-kb Aspergillus parasiticus genomic DNA region representing the completed sequence of the well-organized aflatoxin pathway gene cluster has been sequenced and annotated. In addition to the 19 reported and characterized aflatoxin pathway genes and the four sugar utilization genes in this cluster, we report here the identification of six newly identified genes which are putatively involved in aflatoxin formation. The function of these genes, the cluster organization and its significance in gene expression are discussed.  相似文献   

2.
3.
4.
Aflatoxins are toxic and carcinogenic polyketides produced by several Aspergillus species that are known to contaminate agricultural commodities, posing a serious threat to animal and human health. Aflatoxin (AF) biosynthesis is almost fully characterized and involves the coordinated expression of approximately 25 genes clustered in a 70-kb DNA region. Aspergillus parasiticus is an economically important and common agent of AF contamination. Naturally occurring nonaflatoxigenic strains of A. parasiticus are rarely found and generally produce O-methylsterigmatocystin (OMST), the immediate precursor of AF. To elucidate the evolutionary forces acting to retain AF and OMST pathway extrolites (chemotypes), we sequenced 21 intergenic regions spanning the entire cluster in 24 A. parasiticus isolates chosen to represent the genetic diversity within a single Georgia field population. Linkage disequilibrium analyses revealed five distinct recombination blocks in the A. parasiticus cluster. Phylogenetic network analyses showed a history of recombination between chemotype-specific haplotypes, as well as evidence of contemporary recombination. We performed coalescent simulations of variation in recombination blocks and found an approximately twofold deeper coalescence for cluster genealogies compared to noncluster genealogies, our internal standard of neutral evolution. Significantly deeper cluster genealogies are indicative of balancing selection in the AF cluster of A. parasiticus and are further corroborated by the existence of trans-species polymorphisms and common haplotypes in the cluster for several closely related species. Estimates of Ka/Ks for representative cluster genes provide evidence of selection for OMST and AF chemotypes, and indicate a possible role of chemotypes in ecological adaptation and speciation.  相似文献   

5.
The trpC gene in the tryptophan biosynthetic pathway was isolated from an aflatoxigenic Aspergillus parasiticus by complementation of an Escherichia coli trpC mutant lacking phosphoribosylanthranilate isomerase (PRAI) activity. The cloned gene complemented an E. coli trpC mutant deficient in indoleglycerolphosphate synthase (IGPS) activity as well as an Aspergillus nidulans mutant strain that was defective in all three enzymatic activities of the trpC gene (glutamine amidotransferase, IGPS, and PRAI), thus indicating the presence of a complete and functional trpC gene. The location and organization of the A. parasiticus trpC gene on the cloned DNA fragment were determined by deletion mapping and by hybridization to heterologous DNA probes that were prepared from cloned trpC genes of A. nidulans and Aspergillus niger. These experiments suggested that the A. parasiticus trpC gene encoded a trifunctional polypeptide with a functional domain structure organized identically to those of analogous genes from other filamentous fungi. The A. parasiticus trpC gene was expressed constitutively regardless of the nutritional status of the culture medium. This gene should be useful as a selectable marker in developing a DNA-mediated transformation system to analyze the aflatoxin biosynthetic pathway of A. parasiticus.  相似文献   

6.
A pyruvate decarboxylase gene from Aspergillus parasiticus   总被引:1,自引:0,他引:1  
Abstract A gene encoding a putative pyruvate decarboxylase (EC 4.1.1.1) was isolated from a genomic library of the filamentous fungus Aspergillus parasiticus strain SU-1. The deduced amino acid sequence showed 37% homology to PDC1 from Saccharomyces cerevisiae . Although A. parasiticus has an obligate growth requirement for oxygen, it produced ethanol in shake flask cultures indicating a response to anoxic conditions mediated by pyruvate decarboxylase.  相似文献   

7.
8.
J S Horng  J E Linz    J J Pestka 《Applied microbiology》1989,55(10):2561-2568
The trpC gene in the tryptophan biosynthetic pathway was isolated from an aflatoxigenic Aspergillus parasiticus by complementation of an Escherichia coli trpC mutant lacking phosphoribosylanthranilate isomerase (PRAI) activity. The cloned gene complemented an E. coli trpC mutant deficient in indoleglycerolphosphate synthase (IGPS) activity as well as an Aspergillus nidulans mutant strain that was defective in all three enzymatic activities of the trpC gene (glutamine amidotransferase, IGPS, and PRAI), thus indicating the presence of a complete and functional trpC gene. The location and organization of the A. parasiticus trpC gene on the cloned DNA fragment were determined by deletion mapping and by hybridization to heterologous DNA probes that were prepared from cloned trpC genes of A. nidulans and Aspergillus niger. These experiments suggested that the A. parasiticus trpC gene encoded a trifunctional polypeptide with a functional domain structure organized identically to those of analogous genes from other filamentous fungi. The A. parasiticus trpC gene was expressed constitutively regardless of the nutritional status of the culture medium. This gene should be useful as a selectable marker in developing a DNA-mediated transformation system to analyze the aflatoxin biosynthetic pathway of A. parasiticus.  相似文献   

9.
Regulation of sugar utilization by Aspergillus nidulans   总被引:7,自引:0,他引:7  
  相似文献   

10.
11.
An Aspergillus parasiticus gene, designated apa-2, was identified as a regulatory gene associated with aflatoxin biosynthesis. The apa-2 gene was cloned on the basis of overproduction of pathway intermediates following transformation of fungal strains with cosmid DNA containing the aflatoxin biosynthetic genes nor-1 and ver-1. Transformation of an O-methylsterigmatocystin-accumulating strain, A. parasiticus SRRC 2043, with a 5.5-kb HindIII-XbaI DNA fragment containing apa-2 resulted in overproduction of all aflatoxin pathway intermediates analyzed. Specific enzyme activities associated with the conversion of norsolorinic acid and sterigmatocystin were increased approximately twofold. The apa-2 gene was found to complement an A. flavus afl-2 mutant strain for aflatoxin production, suggesting that apa-2 is functionally homologous to afl-2. Comparison of the A. parasiticus apa-2 gene DNA sequence with that of the A. flavus afl-2 gene (G. A. Payne, G. J. Nystorm, D. Bhatnagar, T. E. Cleveland, and C. P. Woloshuk, Appl. Environ. Microbiol. 59:156-162, 1993) showed that they shared > 95% DNA homology. Physical mapping of cosmid subclones placed apa-2 approximately 8 kb from ver-1.  相似文献   

12.
AIMS: To establish a relationship between lipase gene expression and aflatoxin production by cloning the lipA gene and studying its expression pattern in several aflatoxigenic and nontoxigenic isolates of Aspergillus flavus and A. parasiticus. METHODS AND RESULTS: We have cloned a gene, lipA, that encodes a lipase involved in the breakdown of lipids from aflatoxin-producing A. flavus, A. parasiticus and two nonaflatoxigenic A. flavus isolates, wool-1 and wool-2. The lipA gene was transcribed under diverse media conditions, however, no mature mRNA was detected unless the growth medium was supplemented with 0.5% soya bean or peanut oil or the fungus was grown in lipid-rich medium such as coconut medium. The expression of the lipase gene (mature mRNA) under substrate-induced conditions correlated well with aflatoxin production in aflatoxigenic species A. flavus (SRRC 1007) and A. parasiticus (SRRC 143). CONCLUSIONS: Substrate-induced lipase gene expression might be indirectly related to aflatoxin formation by providing the basic building block 'acetate' for aflatoxin synthesis. No direct relationship between lipid metabolism and aflatoxin production can be ascertained, however, lipase gene expression correlates well with aflatoxin formation. SIGNIFICANCE AND IMPACT OF THE STUDY: Lipid substrate induces and promotes aflatoxin formation. It gives insight into genetic and biochemical aspects of aflatoxin formation.  相似文献   

13.
The clustered prnB, prnC, and prnD genes are repressed by the simultaneous presence of glucose and ammonium. A derepressed mutation inactivating a CreA-binding site acts in cis only on the permease gene (prnB) while derepression of prnD and prnC is largely the result of reversal of inducer exclusion.  相似文献   

14.
15.
16.
Summary The functional integrity of the QUTB gene (encoding quinate dehydrogenase) has been confirmed by transformation of a qutB mutant strain. The DNA sequence of the contiguous genes QUTD (quinate permease), QUTB and QUTG (function unknown) has been determined and analysed, together with that of QUTE (catabolic 3-dehydroquinase). The QUTB sequence shows significant homology with the shikimate dehydrogenase function of the complex AROM locus of Aspergillus nidulans, and with the QA-3 quinate dehydrogenase and QA-1S (repressor) genes of Neurospora crassa. The QUTD gene shows strong homology with the N. crassa QA-Y gene and QUTG with the QA-X gene. QUTD, QUTB, and QUTG, QUTE form two pairs of divergently transcribed genes, and conserved sequence motifs identified in the two common 5 non-coding regions show significant homology with UAS GAL and UAS QA sequences of the Saccharomyces cerevisiae and N. crassa Gal and QA systems. In addition, conserved 5 sequences homologous to the mammalian CAAT box are noted and a previously unreported conserved 22 nucleotide motif is presented.  相似文献   

17.
A large number of quinic acid non-utilizing qut mutants of Aspergillus nidulans deficient in the induction of all three quinic acid specific enzymes have been analysed. One class the qutD mutants, are all recessive and are non-inducible at pH 6.5 due to inferred deficiency in a quinate ion permease. Two regulatory genes have been identified. The QUTA gene encodes an activator protein since most qutA mutants are recessive and non-inducible although a few fully dominant mutants have been found. The QUTR gene encodes a repressor protein since recessive mutations are constitutive for all three enzyme activities. Rare dominant non-inducible mutants which revert readily to yield a high proportion of constitutive strains are inferred to be qutR mutants defective in binding the inducer. The gene cluster has been mapped in the right arm of chromosome VIII in the order: centromere - greater than 50 map units - ornB - 12 map units - qutC (dehydratase)-0.8 map units-qutD (permease), qutB (dehydrogenase), qutE (dehydroquinase), qutA (activator)-4.4 map units - qutR (repressor)-20 map units - galG. This organization differs from that of the qa gene cluster in Neurospora crassa, particularly in the displacement of qutC and qutR.  相似文献   

18.
19.
The nor-1 gene in the filamentous fungus Aspergillus parasiticus encodes a ketoreductase involved in aflatoxin biosynthesis. To study environmental influences on nor-1 expression, we generated plasmid pAPGUSNNB containing a nor-1 promoter-beta-glucuronidase (GUS) (encoded by uidA) reporter fusion with niaD (encodes nitrate reductase) as a selectable marker. niaD transformants of A. parasiticus strain NR-1 (niaD) carried pAPGUSNNB integrated predominantly at the nor-1 or niaD locus. Expression of the native nor-1 and nor-1::GUS reporter was compared in transformants grown under aflatoxin-inducing conditions by Northern and Western analyses and by qualitative and quantitative GUS activity assays. The timing and level of nor-1 promoter function with pAPGUSNNB integrated at nor-1 was similar to that observed for the native nor-1 gene. In contrast, nor-1 promoter activity in pAPGUSNNB and a second nor-1::GUS reporter construct, pBNG3.0, was not detectable when integration occurred at niaD. Because niaD-dependent regulation could account for the absence of expression at niaD, a third chromosomal location was analyzed using pAPGUSNP, which contained nor-1::GUS plus pyrG (encodes OMP decarboxylase) as a selectable marker. GUS expression was detectable only when pAPGUSNP integrated at nor-1 and was not detectable at pyrG, even under growth conditions that required pyrG expression. nor-1::GUS is regulated similarly to the native nor-1 gene when it is integrated at its homologous site within the aflatoxin gene cluster but is not expressed at native nor-1 levels at two locations outside of the aflatoxin gene cluster. We conclude that the GUS reporter system can be used effectively to measure nor-1 promoter activity and that nor-1 is subject to position-dependent regulation in the A. parasiticus chromosome.  相似文献   

20.
Aflatoxins are polyketide-derived secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Among the catalytic steps in the aflatoxin biosynthetic pathway, the conversion of sterigmatocystin to O-methylsterigmatocystin and the conversion of dihydrosterigmatocystin to dihydro-O-methylsterigmatocystin are catalyzed by an S-adenosylmethionine-dependent O-methyltransferase. A cDNA library was constructed by using RNA isolated from a 24-h-old culture of wild-type A. parasiticus SRRC 143 and was screened by using polyclonal antiserum raised against a purified 40-kDa O-methyltransferase protein. A clone that harbored a full-length cDNA insert (1,460 bp) containing the 1,254-bp coding region of the gene omt-1 was identified by the antiserum and isolated. The complete cDNA sequence was determined, and the corresponding 418-amino-acid sequence of the native enzyme with a molecular weight of 46,000 was deduced. This 46-kDa native enzyme has a leader sequence of 41 amino acids, and the mature form of the enzyme apparently consists of 377 amino acids and has a molecular weight of 42,000. Direct sequencing of the purified mature enzyme from A. parasiticus SRRC 163 showed that 19 of 22 amino acid residues were identical to the amino acid residues in an internal region of the deduced amino acid sequence of the mature protein. The 1,460-bp omt-1 cDNA was cloned into an Escherichia coli expression system; a Western blot (immunoblot) analysis of crude extracts from this expression system revealed a 51-kDa fusion protein (fused with a 5-kDa beta-galactosidase N-terminal fragment).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号