首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An SV40-based in vitro replication system has been used to examine the effects of platinum compounds on eukaryotic DNA replication. Plasmid templates containing the SV40 origin of replication were modified with the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP, cisplatin) or the inactive analogues [Pt(dien)Cl]+ and trans-DDP. The platinated plasmids were used as templates for DNA synthesis by the DNA polymerases present in cytosolic extracts prepared from human cell lines HeLa and 293. Bifunctional adducts formed by cis- and trans-DDP inhibited DNA replication by 95% at a bound drug to nucleotide ratio [(D/N)b] of less than 9 x 10(-4), in contrast to the monofunctional [Pt(dien)Cl]+ analogues, which required a (D/N)b of 3.4 x 10(-3) for 62% inhibition of DNA replication. An average of two platinum adducts per genome was sufficient for inhibition of DNA replication by cisplatin. When trans-DDP-modified, but not cis-DDP-modified, SV40 origin containing plasmids [(D/N)b = 1.7 x 10(-3)] were allowed to incubate in the 293 cytosolic extracts for 1 h prior to addition of T-antigen to initiate replication, DNA synthesis was restored to 30% of control. This result suggested the presence of an activity in the extracts that reactivates trans-DDP-modified DNA templates for replication. This hypothesis was confirmed by an in vitro nucleotide excision repair assay that revealed activity in 293 and HeLa cell extracts selective for trans-DDP-modified plasmid DNAs. Such selective repair of trans-DDP-damaged DNA in human cells would contribute to its lack of antitumor activity.  相似文献   

3.
Cisplatin (cis-diamminedichloroplatinum(II] is widely used in the treatment of various human tumours. A large body of experimental evidence indicates that the reaction of cisplatin with DNA is responsible for the cytostatic action of this drug. Several platinum-DNA adducts have been identified and their effect on the conformation of DNA has been investigated. Structural studies of platinum-DNA adducts now permit a reasonably good explanation of the biophysical properties of platinated DNA. Antitumouractive platinum compounds induce in DNA, at low levels of binding, local conformational alterations which have the character of non-denaturing distortions. It is likely that these changes occur in DNA due to the formation of intrastrand cross-links between two adjacent purine residues. On the other hand, the modification of DNA by antitumour-inactive complexes results in the formation of more severe local denaturation changes. Conformational alterations induced in DNA by antitumour-active platinum compounds may be reparable with greater difficulty than those induced by the inactive complexes. Alternatively, non-denaturation change induced in DNA by antitumour platinum drugs could represent more significant steric hindrance against DNA replication as compared with inactive complexes.  相似文献   

4.
The optical properties of the DNA complexes with the compounds of bivalent platinum were studied. The compounds differed by the nature of the anionic and neutral ligands and their spatial arrangement about the platinum atom. It was shown that the same as cis-[Pt (NH3)2Cl2] the platinum compounds with the biological activity, i.e. [Pt (en) Cl2], cis-[PtNH3 (Bz) Cl2] and cis-[Pt (NH3)2NO2Cl] induced at low values of r (a ratio of the number of the platinum moles added to the number of the DNA nucleotide moles in the solution) an increase in the amplitude of the positive band in the spectrum of the circular dichroism (CD) of the linear DNA and a marked decrease in the amplitude of the negative band in the spectrum of the CD of the liquid crystalline microphase of DNA formed in the presence of polyethyleneglycol. By the character of the action on the CD spectrum of the linear and condensed DNA [Pt (tetrameen)Cl2] which had no selective antimitotic effect might be referred to the above platinum compounds. Trans-[Pt (NH3)2NO2Cl], [PtNH3PyCl2], cis-[Pt (NH3)2(NO2)2] and [Pt (NH3)3Cl]Cl having no biological activity either induced only a decrease in the amplitude of the positive band in the CD spectrum of the linear DNA or had no effect on the CD spectrum. The effect of these compounds on the CD spectrum of the liquid crystalline microphase of DNA was slightly pronounced or not observed.  相似文献   

5.
Glutathione can modulate the toxicity of a variety of drugs, although its role in modulating toxicity by anticancer platinum drugs is ambivalent. At physiologically relevant concentrations, glutathione can inhibit the reaction between DNA and cis-dichloro(ethylenediamine)platinum(II) (cis-DEP). Glutathione can also react with monofunctional adducts in DNA to produce a glutathione-Pt-deoxyguanosine cross-link which would reduce the potential toxicity of the drug. The relative importance of these two mechanisms of detoxification is unknown, although both mechanisms probably contribute to glutathione modulation of platinum toxicity.  相似文献   

6.
The trinuclear BBR3464 ([{trans-PtCl(NH3)2}2µ-(trans-Pt(NH3)2(H2N(CH2)6NH2)2)]4+) belongs to the polynuclear class of platinum-based anticancer agents. DNA adducts of this complex differ significantly in structure and type from those of clinically used mononuclear platinum complexes, especially, long-range (Pt, Pt) intrastrand and interstrand cross-links are formed in both 5′–5′ and 3′–3′ orientations. We show employing short oligonucleotide duplexes containing single, site-specific cross-links of BBR3464 and gel electrophoresis that in contrast to major DNA adducts of clinically used platinum complexes, under physiological conditions the coordination bonds between platinum and N7 of G residues involved in the cross-links of BBR3464 can be cleaved. This cleavage may lead to the linkage isomerization reactions between this metallodrug and double-helical DNA. Differential scanning calorimetry of duplexes containing single, site-specific cross-links of BBR3464 reveals that one of the driving forces that leads to the lability of DNA cross-links of this metallodrug is a difference between the thermodynamic destabilization induced by the cross-link and by the adduct into which it could isomerize. The rearrangements may proceed in the way that cross-links originally formed in one strand of DNA can spontaneously translocate from one DNA strand to its complementary counterpart, which may evoke walking of the platinum complex on DNA molecule.  相似文献   

7.
A paradigm for the structure-pharmacological activity relationship of bifunctional platinum antitumor drugs is that the trans isomer of antitumor cisplatin (transplatin) is clinically ineffective. To this end, however, several new complexes of the trans structure have been identified that exhibit cytotoxicity in tumor cells that is even better than that of the analogous cis isomers. We reported recently (Kasparkova, J., Marini, V., Najajreh, Y., Gibson, D., and Brabec, V. (2003) Biochemistry 42, 6321-6332) that the replacement of one ammine ligand by the heterocyclic ligand, such as piperidine, piperazine, or 4-picoline in the molecule of transplatin resulted in a radical enhancement of its cytotoxicity. We examined oligodeoxyribonucleotide duplexes bearing a site-specific cross-link of the transplatin analogue containing the piperidine ligand by biochemical methods. The results indicate that in contrast to transplatin, trans-(PtCl2(NH3)(piperidine)) forms stable 1,3-intrastrand cross-links in double-helical DNA that distort DNA and are not readily removed from DNA by nucleotide excision repair system. Hence, the intrastrand cross-links of trans-(PtCl2(NH3)(piperidine)) could persist for a sufficiently long time, potentiating its toxicity toward tumor cells. trans-(PtCl2(NH3)(piperidine)) also forms in DNA minor interstrand cross-links that are similar to those of transplatin so that these adducts appear less likely candidates for genotoxic lesion responsible for antitumor effects of trans-(PtCl2(NH3)(piperidine)). Hence, the role of structurally unique intrastrand cross-links in the anti-tumor effects of transplatin analogues in which one ammine group is replaced by a heterocyclic ligand may predominate.  相似文献   

8.
B E Bowler  S J Lippard 《Biochemistry》1986,25(10):3031-3038
We report the DNA binding site preferences of the novel molecule AO-Pt, in which the anticancer drug dichloro(ethylenediamine)platinum(II) is linked by a hexamethylene chain to acridine orange. The sequence specificity of platinum binding was mapped by exonuclease III digestion of 165 and 335 base pair restriction fragments from pBR322 DNA. Parallel studies were carried out with the unmodified anticancer drugs cis-diamminedichloroplatinum(II) (cis-DDP) and dichloro(ethylenediamine)platinum(II), [Pt(en)Cl2]. Oligo(dG) sequences are the most prevalent binding sites for AO-Pt, with secondary binding occurring mainly at d(AG) sites. cis-DDP and [Pt(en)Cl2] bind less readily to the secondary sequences, with cis-DDP showing greater binding site selectivity than [Pt(en)Cl2]. The DNA intercalator ethidium bromide promotes binding of [Pt(en)Cl2] and cis-DDP to many sites containing d(CGG) and, to a lesser extent, d(AG) sequences. AO-Pt exhibits enhanced binding to these sequences without the need for an external intercalator. Unlinked acridine orange, however, does not promote binding of [Pt(en)Cl2] and cis-DDP to d(CGG) and d(AG) sequences. These results are discussed in terms of the sequence preferences, stereochemistry, and relative residence times of the intercalators at their DNA binding sites. By modulating local structure in a sequence-dependent manner, both linked and, in the case of ethidium, free intercalators can influence the regioselectivity of covalent modification of DNA by platinum antitumor drugs.  相似文献   

9.
BBR3464, a charged trinuclear platinum compound, is the first representative of a new class of anticancer drugs to enter phase I clinical trials. The structure of BBR3464 is characterized by two [trans-PtCl(NH(3))(2)] units linked by a tetraamine [trans-Pt(NH(3))(2)?H(2)N(CH(2))(6)NH(2)?(2)] unit. The +4 charge of BBR3464 and the separation of the platinating units indicate that the mode of DNA binding will be distinctly different from those of classical mononuclear drugs such as cisplatin, cis-[PtCl(2)(NH(3))(2)]. The reaction of BBR3464 with three different nucleic acid conformations was assessed by gel electrophoresis. Comparison of single-stranded DNA, RNA, and double-stranded DNA indicated that the reaction of BBR3464 with single-stranded DNA and RNA was faster than that with duplex DNA, and produced more drug-DNA and drug-RNA adducts. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry was used to further characterize the binding modes of BBR3464 with the DNA substrates. BBR3464 binding to different nucleic acid conformations raises the possibility that the adducts of single-stranded DNA and RNA may play a role in the different antitumor efficacies of this novel drug as compared with cisplatin.  相似文献   

10.
11.
Deoxyribonuclease I (DNase I) footprinting methodology was used to analyze oligodeoxyribonucleotide duplexes containing unique and single, site-specific adducts of trinuclear bifunctional platinum compound, [{trans-PtCl(NH3)2}2 mu-trans-Pt(NH3)2{H2N(CH2)6NH2}2]4+ (BBR3464) and the results were compared with DNase I footprints of some adducts of conventional mononuclear cis-diamminedichloroplatinum(II) (cisplatin). These examinations took into account the fact that the local conformation of the DNA at the sites of the contacts of DNase I with DNA phosphates, such as the minor groove width and depth, sequence-dependent flexibility and bendability of the double helix, are important determinants of sequence-dependent binding to and cutting of DNA by DNase I. It was shown that various conformational perturbations induced by platinum binding in the major groove translated into the minor groove, allowing their detection by DNase I probing. The results also demonstrate the very high sensitivity of DNase I to DNA conformational alterations induced by platinum complexes so that the platinum adducts which induce specific local conformational alterations in DNA are differently recognized by DNase I.  相似文献   

12.
13.
14.
15.
The trinuclear platinum agent BBR3464, a representative of a new class of anticancer drugs, is more potent than conventional mononuclear cisplatin [cis-diamminedichloroplatinum(II)]. BBR3464 retains significant activity in human tumor cell lines and xenografts that are refractory or poorly responsive to cisplatin, and displays a high activity in human tumor cell lines that are characterized by both wild-type and mutant p53 gene. In contrast, on average, cells with mutant p53 are more resistant to the effect of cisplatin. It has been hypothesized that the sensitivity or resistance of tumor cells to cisplatin might be also associated with cell cycle control and repair processes that involve p53. DNA is a major pharmacological target of platinum compounds and DNA binding activity of the p53 protein is crucial for its tumor suppressor function. This study, using gel-mobility-shift assays, was undertaken to examine the interactions of active and latent p53 protein with DNA fragments and oligodeoxyribonucleotide duplexes modified by BBR3464 in a cell free medium and to compare these results with those describing the interactions of these proteins with DNA modified by cisplatin. The results indicate that structurally different DNA adducts of BBR3464 and cisplatin exhibit a different efficiency to affect the binding affinity of the modified DNA to p53 protein. It has been suggested that different structural perturbations induced in DNA by the adducts of BBR3464 and cisplatin produce a differential response to p53 protein activation and recognition and that a 'molecular approach' to control of downstream effects such as protein recognition and pathways of apoptosis induction may consist in design of structurally unique DNA adducts as cell signals.  相似文献   

16.
A series of calculations employing hybrid quantum mechanics/molecular mechanics methods to explore the binding of square-planar complexes to fragments of DNA are reported. Methylated analogues of the parent compound cis-[Pt(en)Cl2], where en is ethylenediamine, show considerable variation in in vitro cytotoxicity depending on the number and position of methyl groups. Calculations reveal variations in the structure and the binding energy of adducts to single- and double-stranded fragments of DNA. Most such variations are relatively small, but the introduction of three or four methyls on nitrogen of ethylenediamine significantly changes the structure and reduces the binding energy, owing to replacement of strong N–H···O interactions by much weaker C–H···O contacts. Close correlation between measured activity and binding energy is observed, whereas little or no correlation is found with structural parameters or with estimates of the octanol/water partition coefficient, either alone or in combination via multiple linear regression.  相似文献   

17.
Abstract

The present paper deals with the synthesis of novel macrocyclic complexes of the type [MLX]X, where [(M?=?Co(II) (1), and Ni(II) (2) X?=?(Cl2)]. The complexes are synthesized by the reaction of ligand(L)diquinolineno[1,3,7,9]tetraazacyclododecine-7,15-ethane(14H,16H)-benzene with the corresponding metal salts. The synthesized complexes are thoroughly characterized by elemental analysis, FT-IR, 1H-NMR, Mass and electronic spectra. The complexes (1) and (2) were evaluated for in vitro cytotoxicity against human breast adenocarcinoma cell (MCF-7). MTT cytotoxicity studies shows both the complexes are most effective. The binding properties of these complexes with calf thymus-DNA were studied by absorption, emission spectra, viscosity measurements, and thermal denaturation studies. On binding to CT-DNA, the absorption spectrum undergoes bathochromic and hypochromic shifts. The absorption spectral results indicate that the intrinsic binding constant (Kb) are 4.8?×?105?M?1 for (1) and 3.9?×?105?M?1 for (2) respectively, suggesting that complex (1) binds more strongly to CT-DNA than complex (2). The viscosity measurement results revealed the viscosity of sonicated rod like DNA fragments increased when the complex was added to the solution of CT-DNA. The synthesized ligand and its metal complexes are screened for antibacterial and antifungal activities.  相似文献   

18.
The binding of platinum (II)-terpyridine complexes to DNA was studied by using equilibrium dialysis. Optical absorption methods were used to measure the ability of the ligands to aggregate in aqueous buffer. Scatchard plots for the binding of the monomeric [Pt(terpy)SC4H9]+ cation to DNA at I0.01 are curvilinear, concave upwards, suggesting two modes of binding. The association constant decreases at higher ionic strengths, consistent with polyelectrolyte theory, and 1.1 cations are released per bound ligand molecule. The association constants of the binuclear ligands [Pt(terpy)S[CH2]4S(terpy)Pt]2+ and [Pt(terpy)S[CH2]6S(terpy)Pt]2+ are 8 and 23 times larger respectively than the affinity of the monomer. For the latter binuclear derivative the increase may be ascribed to bifunctional reaction. Differential dialysis experiments with DNAs of differing base composition show that [Pt(terpy)SC4H9]+ has a requirement for a single G X C base-pair at the highest-affinity site. However, in the binuclear ligands chromophore specificity is severely compromised. Similar experiments indicate that 9-aminoacridine and selected methylene-linked diacridines show no significant sequence selectivity.  相似文献   

19.
Complexes of the formula cis-[Pt(HN+N)(L)Cl2], where (HN+N) are the protonated diamines including 3-aminoquinuclidine, N-aminopiperidine, piperazine, N-methylpiperazine, 1,1,4-trimethylpiperazine, and N-methyl-1,4-diazabicyclo [2,2,2] octane (N-methyl-dabco) and L = SCN?, NO2?, Br?, and F?, were synthesized from the protonated diamine complexes, [Pt(HN+N)Cl3]. The antitumor activities of the complexes were evaluated in vitro against L1210 murine leukemia cells, and ID50 values for the L-substituted complexes were compared to values of the parent complexes. In each case it was found that replacement of a chloride ion by SCN?, NO2?, Br?, or F?, either reduced or completely eliminated antitumor activity. This effect is explained in terms of the trans-directing ability of the ligand, L, compared to chloride. The NO2-substituted complex of 3- aminoquinuclidine was tested in vivo and found to exhibit little or no antitumor activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号