共查询到20条相似文献,搜索用时 15 毫秒
1.
Equilibrium dissociation and unfolding of the Arc repressor dimer 总被引:20,自引:0,他引:20
The equilibrium unfolding reaction of Arc repressor, a dimeric DNA binding protein encoded by bacteriophage P22, can be monitored by fluorescence or circular dichroism changes. The stability of Arc is concentration dependent, and the unfolding reaction is well described as a two-state transition from folded dimer to unfolded monomer. The stability of the protein is decreased at low pH and increased by high salt concentration. The salt dependence suggests that two ions bind preferentially to the folded protein. In 10 mM potassium phosphate (pH 7.3) and 100 mM KCl, the unfolding free energy reaches a maximum near room temperature. The results suggest that at the low protein concentrations where operator DNA binding is normally measured, Arc is predominantly monomeric and unfolded. 相似文献
2.
Kinetic and equilibrium studies of the binding of modified beta-D-galactoside sugars to the lac repressor were carried out to generate thermodynamic data for protein-inducer interactions. The energetic contributions of the galactosyl hydroxyl groups to binding were assessed by using a series of methyl deoxyfluoro-beta-D-galactosides. The C-3 and C-6 hydroxyls contributed less than or equal to -2.3 and -1.7 +/- 0.3 kcal/mol to the binding free energy change, respectively, whereas the C-4 hydroxyl provided only a nominal contribution (-0.1 +/- 0.2 kcal/mol). Favorable contributions to the total binding free energy change were observed for replacement of O-methyl by S-methyl at the beta-anomeric position and for S-methyl by S-isopropyl. Negative delta H degrees values characteristic of protein-sugar complexes [Quiocho, F. A. (1986) Annu. Rev. Biochem. 55, 287-315] were observed for a series of beta-D-galactosides differing at the beta-glycosidic position. A decrease in delta H degrees of approximately 6 kcal/mol upon replacement of the O-methyl substituent by S-methyl indicates a substantial increase in van der Waals' interactions and/or hydrogen bonding in this region of the ligand binding site. The more favorable free energy change for the binding of the S-isopropyl vs S-methyl compound is due mainly to more positive entropic contributions, consistent with an increase in apolar interactions.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
M E Alexander A A Burgum R A Noall M D Shaw K S Matthews 《Biochimica et biophysica acta》1977,493(2):367-379
Reaction of the lactose repressor protein from Escherichia coli with high molar excesses (up to 800 fold) of tetranitromethane resulted in modification of tyrosine residues in the amino-terminal and core regions of the molecule. Tyrosines 7 and 17 exhibit significant reactivity at low levels (5-10 fold molar excess) of tetranitromethane. The loss of operator binding activity upon nitration at these low concentrations of reagent indicates involvement of these two tyrosines in the binding process. Inducer binding activity was maintained at approx. 90% of unreacted repressor for all excesses of reagent studied. Addition of inducer to the repressor prior to reaction resulted in decreased modification of tyrosines in the core region, but anti-inducers did not affect the reaction significantly. The effect of inducers on the pattern of reaction apparently reflects the conformational change which occurs upon binding of these ligands. Acetylation of the repressor protein with N-acetylimidazole modified lysines and tyrosines with complete loss of operator binding activity and retention of 75-80% of inducer binding activity. 相似文献
4.
Lactose repressor protein has been modified with N-ethylmaleimide, two N-maleimide spin labels, and an N-maleimide fluorophore. The reaction with repressor cysteine residues has been characterized. Approximately 2 of the 3 eq of cysteine/repressor monomer are reactive toward these reagents. Repressor cysteines are reactive toward these reagents in the order cysteine 140 greater than or equal to cysteine 107 greater than cysteine 281. The reaction is sulfhydryl-specific. Comparison of chemical modification data obtained in this laboratory using a variety of sulfhydryl-specific reagents has been used to assess chemical features of individual cysteine environments. Effects of the maleimide reagents on biological activity have been determined. Only the fluorophore N-(3-pyrene)maleimide has significant effect; this agent selectively perturbs repressor's ability to bind to operator DNA. This result suggests that regions of protein structure surrounding 1 or more of the cysteine residues possess determinants required for normal operator DNA binding. 相似文献
5.
K S Matthews 《The Journal of biological chemistry》1979,254(9):3348-3353
The core protein produced by mild proteolytic digestion of lactose repressor protein has been purified from native repressor by chromatography on phosphocellulose. The core protein isolated in this manner binds to operator DNA with an apparent dissociation constant of 10(-7) M, and the observed binding is decreased by the presence of inducer. Competition studies with nonspecific DNA indicate that the binding species in the core protein preparations is neither intact lactose repressor nor mixed tetramers containing varying numbers of intact NH2-terminal regions. This conclusion is supported by experiments designed to measure the rate of dissociation of the core protein from the operator DNA. Calculations based on the assumption that the isolated core protein binds similarly to the corresponding region in intact repressor protein indicate that the core region contributes approximately 40 to 50% of the energy of binding to operator DNA. Furthermore, the change in operator affinity upon inducer binding to core accounts for a minimum of 60% of the free energy change in binding to operator observed for the native protein. The demonstration that core protein binds to operator DNA requires a re-evaluation of the various models for repressor binding to DNA. A possible model based on the available information is presented. 相似文献
6.
K. M. Perry M. Pookanjanatavip J. Zhao D. V. Santi R. M. Stroud 《Protein science : a publication of the Protein Society》1992,1(6):796-800
Conditions for in vitro unfolding and refolding of dimeric thymidylate synthase from Lactobacillus casei were found. Ultraviolet difference and circular dichroism spectra showed that the enzyme was completely unfolded at concentrations of urea over 5.5 M. As measured by restoration of enzyme activity, refolding was accomplished when 0.5 M potassium chloride was included in the refolding mixture. Recombination of subunits from catalytically inactive mutant homodimers to form an active hybrid dimer was achieved under these unfolding-refolding conditions, demonstrating a monomer to dimer association step. 相似文献
7.
Ultraviolet difference spectra of the lactose repressor protein. II. Trypsin core protein 总被引:3,自引:0,他引:3
K S Matthews 《Biochimica et biophysica acta》1974,359(2):334-340
8.
Ultraviolet difference spectra of the lactose repressor protein 总被引:2,自引:0,他引:2
K S Matthews H R Matthews H W Thielmann G Jardetzky 《Biochimica et biophysica acta》1973,295(1):159-165
9.
Thermodynamic analysis of transfer RNA unfolding 总被引:3,自引:0,他引:3
10.
Evidence for leucine zipper motif in lactose repressor protein 总被引:10,自引:0,他引:10
A E Chakerian V M Tesmer S P Manly J K Brackett M J Lynch J T Hoh K S Matthews 《The Journal of biological chemistry》1991,266(3):1371-1374
Amino acid sequence homology between the carboxyl-terminal segment of the lac repressor and eukaryotic proteins containing the leucine zipper motif with associated basic DNA binding region (bZIP) has been identified. Based on the sequence comparisons, site-specific mutations have been generated at two sites predicted to participate in oligomer formation based on the three-leucine heptad repeat at positions 342, 349, and 356. Leu342----Ala, Leu349----Ala, and Leu349----Pro have been isolated and their oligomeric state and ligand binding properties evaluated. These mutant proteins do not form tetramers but exist as stable dimers with inducer binding comparable with the wild-type protein. Apparent operator affinities for lac repressor proteins with mutations in the proposed bZIP domain were significantly lower than the corresponding wild-type values. For these dimeric mutant proteins, the monomer-dimer equilibrium is linked to the apparent operator binding constant. The values for the monomer-monomer binding constant and for the intrinsic operator binding constant for the dimer cannot be resolved from measurements of the observed Kd for operator DNA. Further studies on these proteins are in progress. 相似文献
11.
Modification of the lysine residues in the lactose repressor protein has been carried out with trinitrobenzenesulfonate. Reaction of lysine residues at positions 33, 37, 108, 290, and 327 was observed. Inducer binding was increased by modification with this reagent, while both nonspecific DNA binding and operator DNA binding were diminished, although to differing degrees. The loss in operator DNA binding capacity was complete with modification of approximately 2 equiv of lysine per monomer. The extent of reaction was affected by the presence of both sugar and DNA ligands; binding activities of the modified protein and reaction pattern of the lysines were perturbed by these ligands. The presence of operator or nonspecific DNA during the reaction protected against specific and nonspecific DNA binding activity loss. This protection presumably occurs by steric restriction of reagent access to lysine residues which are essential for both nonspecific and operator binding interactions. Lysines-33 and -108 were protected from modification in the presence of DNA. These experiments suggest that the charge on the lysine residues is important for protein interaction with DNA and that steric constraints for operator DNA interaction with the protein are more restrictive than for nonspecific DNA binding. In contrast, inducer (isopropyl beta-D-thiogalactoside) presence partially protected lysine-290 from modification while significantly enhancing reaction at lysine-327. Conformational alterations consequent to inducer binding are apparently reflected in these altered lysine reactivities. 相似文献
12.
13.
Amino acid alterations were designed at the C terminus of the hinge segment (amino acids approximately 51-59) that links two functional domains within lactose repressor protein (LacI). Gly was introduced between Gly(58) and Lys(59) to generate Gly(58+1); Gln(60) was changed to Gly or Pro, and up to three additional glycines were inserted following Gln(60) --> Gly. All mutant proteins exhibited purification behavior, CD spectra, assembly state, and inducer binding properties similar to wild-type LacI and only small differences in trypsin proteolysis patterns. In contrast, significant differences were observed in DNA binding properties. Gly(58+1) exhibited a decrease of approximately 100-fold in affinity for O(1) operator, and sequential Gly insertion C-terminal to Gln(60) --> Gly resulted in progressively decreased affinity for O(1) operator, approaching nonspecific levels for insertion of >/=2 glycines. Where sufficient affinity for O(1) operator existed, decreased binding to O(1) in the presence of inducer indicated no disruption in the allosteric response for these proteins. Collectively, these results indicate that flexibility and/or spacing between the core and N-terminal domains did not significantly affect folding or assembly, but these alterations in the hinge domain profoundly altered affinity of the lactose repressor protein for its wild-type target sequence. 相似文献
14.
Characterization and modification of a monomeric mutant of the lactose repressor protein 总被引:3,自引:0,他引:3
A monomeric mutant lactose repressor protein (T-41), containing serine at position 282 in place of tyrosine [Schmitz, A., Schmeissner, U., Miller, J. H., & Lu, P. (1976) J. Biol. Chem. 251, 3359-3366], has been purified by a series of chromatographic and precipitation methods. The molecular weight of the mutant as determined by gel filtration was approximately 40,000. The inducer equilibrium binding constant for the mutant was comparable to that of the tetrameric wild-type repressor at pH 7.5, whereas operator DNA binding was not detectable. In contrast to wild-type repressor, equilibrium and kinetic rate constants for inducer binding to the monomer were largely independent of pH; thus, the quaternary structure of the wild-type repressor is required for the pH-associated effects on inducer binding. Although ultraviolet absorbance difference spectra indicated that inducer binding to T-41 protein elicited different changes in the environment of aromatic residues from those generated in wild-type repressor, the shift in the fluorescence emission maximum in response to inducer binding was similar for T-41 and wild-type repressors. Similarity in 1-anilinonaphthalene-8-sulfonic acid binding to monomer and tetramer suggests that this fluorophore does not bind at subunit interfaces. Modification of Cys-281 with methyl methanethiosulfonate was observed at low molar ratios of reagent per T-41 monomer (4-fold). This result is in contrast to data observed for tetrameric wild-type repressor which requires high molar ratios for this cysteine to react. We conclude that Cys-281, adjacent to the site of the T-41 mutation, is located on the surface of the monomer in this region crucial for subunit interaction. 相似文献
15.
Thermal unfolding of ribonuclease A, lysozyme, and chymotrypsinogen A was analyzed as a multisite reaction of a protein molecule with water and solute molecules. The protein unfolding process in various solutions of sugars and denaturants was described well by the van't Hoff equation. The reciprocal form of the Wyman-Tanford equation, which describes the unfolded-to-folded protein ratio as a function of water activity, was successfully applied to obtain a good linear relationship. From this analysis, the role of water activity on protein stability was clearly explained and the contributions of hydration and solute binding to protein molecule were separately discussed in protein unfolding. General solution for the free energy of protein stability was obtained as a simple function of solute concentration. 相似文献
16.
Mutation in hinge region of lactose repressor protein alters physical and functional properties 总被引:2,自引:0,他引:2
A mutant of the Escherichia coli lactose repressor (BG124) in which serine at position 77 is replaced by leucine has been examined by physical methods. Consistent with the phenotypic character of this i-d mutant, BG124 protein did not bind lactose operator specifically, but did bind to DNA nonspecifically. Titration with inducer monitoring tryptophan fluorescence changes yielded a biphasic saturation curve, and Scatchard and Hill plots of the fluorescence and equilibrium dialysis data demonstrated heterogeneity of inducer binding sites. Although ultraviolet difference spectra and potassium iodide quenching of fluorescence indicated that BG124 repressor has structural distinctions from wild-type protein, circular dichroism spectra and acrylamide quenching of fluorescence for the two proteins were quite similar. A significantly greater increase of 1-anilino-8-naphthalenesulfonate fluorescence was observed in the presence of mutant versus wild-type repressor. Unlike wild-type behavior, changes in both 1-anilino-8-naphthalenesulfonate fluorescence intensity and maximum emission wavelength in response to inducer were found for the BG124 protein. These results are consistent with conformational alterations in the interface between NH2-terminal and core domains of this mutant repressor. The single amino acid alteration in the hinge between the core and NH2 terminus yields conformational effects which influence physical and functional properties associated with both domains. 相似文献
17.
Thermodynamic stability parameters and the equilibrium unfolding mechanism of His 6HodC69S, a mutant of 1 H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) having a Cys to Ser exchange at position 69 and an N-terminal hexahistidine tag (His 6HodC69S), have been derived from isothermal unfolding studies using guanidine hydrochloride (GdnHCl) or urea as denaturants. The conformational changes were monitored by following changes in circular dichroism (CD), fluorescence, and dynamic light scattering (DLS), and the resulting transition curves were analyzed on the basis of a sequential three-state model N = I = D. The structural changes have been correlated to catalytic activity, and the contribution to stability of the disulfide bond between residues C37 and C184 in the native protein has been established. A prominent result of the present study is the finding that, independent of the method used for denaturing the protein, the unfolding mechanism always comprises three states which can be characterized by, within error limits, identical sets of thermodynamic parameters. Apparent deviations from three-state unfolding can be rationalized by the inability of a spectroscopic probe to discriminate clearly between native, intermediate, and unfolded ensembles. This was the case for the CD-monitored urea unfolding curve. 相似文献
18.
19.
Kinetic and equilibrium constants for lactose repressor-operator DNA interaction have been examined as a function of salt concentration, size and sequence context of the operator DNA, and temperature. Significant salt effects were observed on kinetic and equilibrium parameters for pLA 322-8, an operator-containing derivative of pBR 322, and pIQ, an operator and pseudooperator-containing derivative of pBR 322. The association rate constant and equilibrium constant for the 40 base pair operator fragment were also salt dependent. Data for all the DNAs were consistent with a sliding mechanism for repressor-operator association/dissociation [Berg, O. G., & Blomberg, C. (1978) Biophys. Chem. 8, 271-280]. Calculation of the number of ionic interactions based on salt dependence yielded a value of approximately 8 for repressor binding to pIQ and pLA 322-8 vs. approximately 6 for the repressor-40 base pair fragment. These data and the differences in binding parameters for the plasmids vs. the 40 base pair operator are consistent with the formation of an intramolecular ternary complex in the plasmid DNAs. Unusual biphasic temperature dependence was observed in the equilibrium and dissociation rate constants for pLA 322-8, pIQ, and the 40 base pair fragment. These observations coupled with a discontinuity found in the inducer association rate constant as a function of temperature suggest a structural change in the protein. The large positive entropy contributions associated with repressor binding to all the DNAs examined provide the significant driving force for the reaction and are consistent with involvement of ionic and apolar interactions in complex formation. 相似文献
20.
Dissociation of the lactose repressor protein tetramer using high hydrostatic pressure 总被引:1,自引:0,他引:1
Dissociation of lac repressor tetramer by high hydrostatic pressures was monitored with intrinsic tryptophan fluorescence. With the assumption of complete dissociation to monomer, tryptophan polarization data gave delta V a approximately 170 mL/mol and the concentration for 50% tetramer dissociation, C1/2, was 3.8 X 10(-8) M. Upon addition of inducer, the calculated delta V a increased to approximately 220 mL/mol and the C1/2 decreased to approximately 1 X 10(-8) M, a free energy difference of approximately 0.7 kcal. These results indicate a modest stabilization of the tetramer by the presence of inducer. Monitoring the average energy of tryptophan emission demonstrated that tetramer dissociation takes place over the same range of pressures as evidenced by the polarization data and IPTG dissociation can be more or less superimposed upon tetramer dissociation depending upon the ligand concentration used. Although the two transitions cannot be separated entirely, the delta V a for the region of the pressure dependence dominated by ligand dissociation was 69 mL/mol, an unexpectedly large value. For tetramer modified with methyl methanethiosulfonate, subunit dissociation was shifted to much higher pressures and IPTG dissociation did not occur. The delta V a for subunit association was calculated as approximately 160 mL/mol, and the C1/2 was 3.5 X 10(-9) M. Interactions at the subunit interface of the modified protein are apparently stronger than in the unmodified protein. The absence of inducer dissociation from the MMTS-modified tetramer by the application of high hydrostatic pressure suggests that the volume change for inducer binding to the modified protein is much smaller than that observed for the unmodified repressor. 相似文献