首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A phosphate-dependent exonuclease activity was identified in purified protein fractions from Bacillus subtilis that were selected for binding to poly(I)-poly(C) agarose. Based on the characteristics of the degradation products and the absence of this activity in a pnpA strain, which contains a transposon insertion in the B. subtilis PNPase gene (Luttinger et al ., 1996 — accompanying paper), this exonuclease activity was shown to be due to polynucleotide phosphorylase (PNPase). Processive 3'-to-5' exonucleolytic degradation of an SP82 phage RNA substrate was stalled at a particular site. Structure probing of the RNA showed that the stall site was downstream of a particular stem-loop structure. A similar stall site was observed for an RNA that comprised the intergenic region between the B. subtilis rpsO and pnpA genes. The ability to initiate degradation of a substrate that had a stem structure at its 3' end differed for the B. subtilis and Escherichia coli PNPase enzymes.  相似文献   

4.
5.
6.
The Gram-negative anaerobe Dichelobacter nodosus is the causative agent of footrot in sheep. Different strains of D. nodosus cause disease of differing severities, ranging from benign to virulent. Virulent strains have greater twitching motility and secrete proteases that are more thermostable than those secreted by benign strains. We have identified polynucleotide phosphorylase (PNPase) as a putative virulence regulator and have proposed that PNPase expression is modulated by the adjacent integration of genetic elements. In this study, we compared PNPase activity in three virulent and four benign strains of D. nodosus and found that PNPase activity is lower in virulent strains. We disrupted the pnpA gene in three benign D. nodosus strains and two virulent strains and showed that deletion of the S1 domain of PNPase reduced catalytic activity. In all but one case, deletion of the PNPase S1 domain had no effect on the thermostability of extracellular proteases. However, this deletion resulted in an increase in twitching motility in benign, but not in virulent strains. Reconstruction of the pnpA gene in two mutant benign strains reduced twitching motility to the parental level. These results support the hypothesis that PNPase is a virulence repressor in benign strains of D. nodosus .  相似文献   

7.
8.
9.
Bacillus subtilis pnpA gene product, polynucleotide phosphorylase (PNPase), is involved in double-strand break (DSB) repair via homologous recombination (HR) or non-homologous end-joining (NHEJ). RecN is among the first responders to localize at the DNA DSBs, with PNPase facilitating the formation of a discrete RecN focus per nucleoid. PNPase, which co-purifies with RecA and RecN, was able to degrade single-stranded (ss) DNA with a 3' → 5' polarity in the presence of Mn(2+) and low inorganic phosphate (Pi) concentration, or to extend a 3'-OH end in the presence dNDP · Mn(2+). Both PNPase activities were observed in evolutionarily distant bacteria (B. subtilis and Escherichia coli), suggesting conserved functions. The activity of PNPase was directed toward ssDNA degradation or polymerization by manipulating the Pi/dNDPs concentrations or the availability of RecA or RecN. In its dATP-bound form, RecN stimulates PNPase-mediated polymerization. ssDNA phosphorolysis catalyzed by PNPase is stimulated by RecA, but inhibited by SsbA. Our findings suggest that (i) the PNPase degradative and polymerizing activities might play a critical role in the transition from DSB sensing to end resection via HR and (ii) by blunting a 3'-tailed duplex DNA, in the absence of HR, B. subtilis PNPase might also contribute to repair via NHEJ.  相似文献   

10.
11.
目的:在枯草芽孢杆菌中表达嘌呤核苷磷酸化酶(PNPase)并分析其活性。方法:将PNPase的编码基因deoD克隆入pDG148表达载体,构建原核穿梭型表达载体pDG148-deoD,采用电转化方法将表达载体转入枯草芽孢杆菌WB600后诱导表达重组PNPase;研究重组PNPase的活性。结果与结论:获得的重组PNPase活性较对照提高了193.9%,其最适催化条件为65℃、pH7.5、500μmol/L底物浓度和1%1,2,4-三氮唑-3-羧甲酰胺;对重组菌的发酵条件进行了初步优化,IPTG诱导6h后在发酵液中添加0.5%的Tween-80能大幅度提高重组PNPase的酶活力。  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
The Bacillus subtilis gene (sspE) which codes for small acid-soluble spore protein gamma (SASP-gamma) was cloned, and its chromosomal location (65 degrees, linked to glpD) and nucleotide sequence were determined. The amino acid sequence of SASP-gamma is similar to that of SASP-B of Bacillus megaterium, but these sequences are not as highly conserved across species as are those of other SASPs. The SASP-gamma gene is transcribed only in sporulation in parallel with other SASP genes and gives a single mRNA that is approximately 340 nucleotides long. The results of hybridization of an sspE gene probe to Southern blots of B. subtilis DNA suggested that there is only a single gene coding for the SASP-gamma type of protein in B. subtilis. This was confirmed by introducing a deletion mutation into the cloned sspE gene and transferring the deletion into the B. subtilis chromosome, with concomitant loss of the wild-type gene. This sspE deletion strain sporulated well, but lacked the SASP-gamma type of protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号