首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
pBNiR1, a cDNA clone encoding part of the barley nitrite reductase apoprotein, was isolated from a barley (cv. Maris Mink) leaf cDNA library using the 1.85 kb insert of the maize nitrite reductase cDNA clone pCIB808 as a heterologous probe. The cDNA insert of pBNiR1 is 503 by in length. The nucleotide coding sequence could be aligned with the 3 end of other higher plant nitrite reductase apoprotein cDNA sequences but diverges in the 3 untranslated region. The whole-plant barley mutant STA3999, previously isolated from the cultivar Tweed, accumulates nitrite after nitrate treatment in the light, has very much lowered levels of nitrite reductase activity and lacks detectable nitrite reductase cross-reacting material due to a recessive mutation in a single nuclear gene which we have designated Nir1. STA3999 has the characteristics expected of a nitrite reductase apoprotein gene mutant. Here we have used pB-NiR1 in RFLP analysis to determine whether the mutation carried by STA3999 is linked to the nitrite reductase apoprotein gene locus Nii. An RFLP was identified between the wild-type barley cultivars Tweed (major hybridising band of 11.5 kb) and Golden Promise (major hybridising band of 7.5 kb) when DraI-digested DNA was probed with the insert from the partial barley nitrite reductase cDNA clone, pBNiR1. DraI-digested DNA from the mutant STA3999 also exhibited a major hybridising band of 11.5 kb after hybridisation with the insert from pBNiR1. F1 progeny derived from the cross between the cultivar Golden Promise and the homozygous nir1 mutant STA3999 were heterozygous for these bands as anticipated. Co-segregation of the Tweed RFLP band of 11.5 kb and the mutant phenotype (leaf nitrite accumulation after nitrate treatment/loss of detectable nitrite reductase cross-reacting material at Mr 63000) was scored in an F2 population of 312 plants derived from the cross between the cultivar Golden Promise and the homozygous mutant STA3999. The Tweed RFLP band of 11.5 kb and the mutant phenotype showed strict co-segregation (in approximately one quarter (84) of the 312 F2 plants examined). Only those F2 individuals heterozygous for the RFLP pattern gave rise to F3 progeny which segregated for the mutant phenotype. We conclude that the nir1locus and the nitrite reductase apoprotein gene Nii are very tightly linked.  相似文献   

2.
3.
A full-length cDNA clone (MB3) and three partial clones (MA1, MB1 and MB2) which encode myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1) were isolated from a Sinapis alba (white mustard) cDNA library. Nucleotide sequence analysis of these clones revealed that they are encoded by a gene family. Southern blot analysis with gene-specific probes showed that the gene family consists of a least two subfamilies (MA and MB) each with several members both in S. alba and in Brassica napus (oilseed rape). In Arabidopsis thaliana (wall cress) only three myrosinase genes seem to be present. Northern blot analysis indicated that all the myrosinase mRNA species have the same size, approximately 1.95 kb.  相似文献   

4.
Several reductases belonging to the large enzyme superfamily of the short-chain dehydrogenases/reductases (SDR) are involved in the reductive metabolism of carbonyl containing xenobiotics. In order to characterize the human enzymes dicarbonyl/l-xylulose reductase (DCXR), and dehydrogenase/reductase members 2 and 4 (DHRS2, DHRS4) in terms of metabolism of xenobiotics, orthologues from the model organism Caenorhabditis elegans (C. elegans) were identified by using hidden Markov models that were developed in the present study. Accordingly, we describe the characterization of proteins from C. elegans as orthologous to the human enzymes DCXR and DHRS2/4 using a combined approach of bioinformatic and biochemical methods. With the hidden Markov model based system we identified the C. elegans proteins SDR20C18, SDR25C21 and SDR25C22 as being homologous to the human enzymes DCXR, and DHRS2 or DHRS4, respectively. After cloning and overexpression of these three C. elegans genes in Escherichia coli we could purify SDR20C18 and SDR25C22 as soluble proteins by Ni-affinity chromatography, whereas recombinant SDR25C21 was only found in inclusion bodies. Both SDR20C18 (UniProtAcc: Q21929) and SDR25C22 (UniProtAcc: Q93790) were tested with a variety of xenobotic carbonyl compounds as substrates. A comparison of the catalytic activities of SDR20C18 and SDR25C22 with well-known substrates of the human forms revealed that SDR20C18 is the DCXR-orthologue enzyme to the human enzyme and that SDR25C22 might be a DHRS2/4 homologue. Due to their high sequence identity, it was so far not possible to distinguish between SDR25C22 and the human DHRS2/4 proteins by means of sequence analysis alone. However, the study of homologue genes in the model organism C. elegans can provide valuable information on the putative physiological role of the corresponding human form.  相似文献   

5.
6.
To this day, a significant proportion of the human genome remains devoid of functional characterization. In this study, we present evidence that the previously functionally uncharacterized product of the human DHRS10 gene is endowed with 17beta-HSD (17beta-hydroxysteroid dehydrogenase) activity. 17beta-HSD enzymes are primarily involved in the metabolism of steroids at the C-17 position and also of other substrates such as fatty acids, prostaglandins and xenobiotics. In vitro, DHRS10 converts NAD+ into NADH in the presence of oestradiol, testosterone and 5-androstene-3beta,17beta-diol. Furthermore, the product of oestradiol oxidation, oestrone, was identified in intact cells transfected with a construct plasmid encoding the DHRS10 protein. In situ fluorescence hybridization studies have revealed the cytoplasmic localization of DHRS10. Along with tissue expression data, this suggests a role for DHRS10 in the local inactivation of steroids in the central nervous system and placenta. The crystal structure of the DHRS10 apoenzyme exhibits secondary structure of the SDR (short-chain dehydrogenase/reductase) family: a Rossmann-fold with variable loops surrounding the active site. It also reveals a broad and deep active site cleft into which NAD+ and oestradiol can be docked in a catalytically competent orientation.  相似文献   

7.
To identify novel psoriasis-associated genes, we focused on several ESTs (expressed sequence tags) whose expression was predominantly increased in the affected skin in patients with psoriasis vulgaris, as assessed by microarray assay. In this paper, a full-length cDNA corresponding to one of those ESTs (AI440266) was isolated by screening of cultured human keratinocyte cDNA libraries. This cDNA has an open reading frame of a 309-amino-acid protein, sharing significant homology to one of the short-chain alcohol dehydrogenase/reductase (SDR) families that can catalyze the first and rate-limiting step that generates retinaldehyde from retinol. So, this gene was designated as hRDH-E2 (human epidermal retinal dehydrogenase 2). The hRDH-E2 gene has a single functional copy on chromosome 8q12.1, spanning approximately 20kb with seven exons. The deduced amino acid sequence contains three motifs that are conserved in the SDR family. Qualitative RT-PCR demonstrated that the mRNA levels of hRDH-E2 were significantly elevated in the affected skin in psoriasis patients as compared to the unaffected skin in patients and the normal skin in healthy individual. These results suggest that hRDH-E2 may be involved in the pathogenesis of psoriasis through its critical role in retinol metabolism in keratinocyte proliferation.  相似文献   

8.
Wada S  Watanabe T 《Genetica》2007,131(3):307-314
Mitogen-activated protein (MAP) kinases, a closely related family of protein kinases, are involved in cell cycle regulation and differentiation in yeast and human cells. They have not been documented in ciliates. We used PCR to amplify DNA sequences of a ciliated protozoan—Paramecium caudatum—using primers corresponding to amino acid sequences that are common to MAP kinases. We isolated and sequenced one putative MAP kinase-like serine/threonine kinase cDNA from P. caudatum. This cDNA, called pcstk1 (Paramecium caudatum Serine/Threonine Kinase 1) shared approximately 35% amino acid identity with MAP kinases from yeast. MAP kinases are activated by phosphorylation of specific threonine and tyrosine residues. These two amino acid residues are conserved in the PCSTK1 sequence at positions Thr 159 and Tyr 161. The PSTAIRE motif, which is characteristic of the CDK2 gene family, cannot be found in ORF of PCSTK1. The highest homology score was to human STK9, which contains MAP type kinase domains. Comparisons of expression level have shown that pcstk1 is expressed equally in cells at different stages (sexual and asexual). We discussed the possibility, as in other organisms, that a family of MAP kinase genes exists in P. caudatum.  相似文献   

9.
10.
SIRE-1 is a family of several hundred dispersed copies of a very large DNA element from Glycine max that has features characteristic of retroviruses and retrotransposons. A 2.4 kb SIRE-1-specific fragment was recovered from a soybean cDNA library and sequenced. The sequence contains two ORFs. Theoretical translation of ORF1 produces a gag-prot-like polyprotein containing highly conserved motifs found in retroelement nucleocapsids (CX2CX4HX4C) and aspartic proteases (LDSG). The second ORF is foreshortened. The cDNA also contains nearly 200 bp of a putative 5 LTR just upstream of a tRNA primer-binding site.  相似文献   

11.
Immunoscreening of an Ewing’s family of tumour (EFT)-derived cDNA library using formerly described EFT-specific antibodies led to the isolation of a 3.5 kb cDNA, named Ewing’s tumour-associated antigen 16 (ETAA16). The ETAA16 cDNA shows no homology to any functionally characterised human gene. Only a bovine cDNA expressed in bovine testis and hepatocytes is functionally characterised as it encodes for a junction plaque associated protein and showed a homology of 69.9% at amino acid level to ETAA16. The human cDNA encodes for a 926 amino acid tumour antigen with a calculated molecular weight of 103 kDa. The epitope of the ETAA16-specific antibody, Ak16, covers the central region of the protein which is part of an extra cellular domain. The human ETAA16 gene locus has been assigned to chromosome 2p13-15 by FISH analyses and is confirmed by the human genome sequencing project. As demonstrated by flow cytometry, the cell surface expression of ETAA16 antigen is restricted to ET cell lines and not expressed on other small blue round cell tumours or other kind of tumour. RT-PCR analysis revealed a high expression of ETAA16 in brain, liver and kidney while lung and heart were negative. Immunohistochemistry showed an intracellular expression of ETAA16 in different kind of non-Ewing tumour tissues. These results suggest that ETAA16 may function as a tumour-specific cell surface antigen in EFTs.  相似文献   

12.
Tektins comprise a family of filament-forming proteins that are known to be coassembled with tubulins to form ciliary and flagellar microtubules. A new member of the tektin gene family was cloned from the human fetal brain cDNA library. We hence named it the human TEKTIN1 gene. TEKTIN1 cDNA consists of 1375 bp and has a putative open reading frame encoding 418 amino acids. The predicted protein is 48.3 kDa in size, and its amino acid sequence is 82% identical to that of the mouse, rat, and dog. One conserved peptide RPNVELCRD was observed at position number 323–331 of the amino acid sequence, which is a prominent feature of tektins and is likely to represent a functionally important protein domain. TEKTIN1 gene was mapped to the human chromosome 17 by BLAST search, and at least eight exons were found. Northern blot analysis indicated that TEKTIN1 was predominantly expressed in testis. By in-situ hybridization analysis, TEKTIN1 mRNA was localized to spermatocytes and round spermatids in the seminiferous tubules of the mouse testis, indicating that it may play a role in spermatogenesis.  相似文献   

13.
The short-chain dehydrogenases/reductases (SDRs) play an important role in the body's metabolism. We have cloned a novel mouse SDR cDNA, which encodes a deduced HSD-like protein with a conserved SDR domain and an SCP2 domain. The 1.8 kb cDNA consists of 11 exons and is mapped to mouse chromosome 4B3. The corresponding gene is widely expressed in normal mouse tissues and its expression level in the liver increases after inducement with cholesterol food. The predicted mouse HSDL2 protein, which has a peroxisomal target signal, is localized in the cytoplasm of NIH 3T3 cells.  相似文献   

14.
An 11 kb Eco RI genomic fragment containing the alcohol dehydrogenase (Adh1) gene was cloned. Cross-hybridization with three Adh2 cDNA clones suggested that the entire coding region of the Adh1 gene was contained on a 6.2 kb Xba I/Hind III subfragment. Using RFLP linkage analysis, the genomic clone was mapped on chromosome 4 between the markers TG 182 and TG 65 in a position corresponding to the Adh1 locus. To further confirm the Adh1 origin of the genomic clone, tobacco plants were transformed with the 6.2 kb Xba I/Hinb III genomic subfragment. Isozyme analysis demonstrated that in transgenic tobacco plants functional tomato specific ADH-1 homodimers were synthesized as well as heterodimers composed of tobacco and tomato subunits.  相似文献   

15.
The XIST gene plays an essential role in X Chromosome (Chr) inactivation during the early development of female humans. It is believed that the XIST gene, not encoding a protein, functions as an RNA. The XIST cDNA is unusually long, as its full length is reported to be 16.5 kilobase pairs (kb). Here, comparison of sequences from the genomic interval downstream to the 3′ end of the human XIST gene against the human EST database brought to light a number of human EST sequences that are mapped to the region. Furthermore, PCR amplification of human cDNA libraries and RNA fluorescence in situ hybridization (RNA-FISH) demonstrate that the human XIST gene has additional 2.8 kb downstream sequences which have not been documented as a part of the gene. These data show that the full-length XIST cDNA is, in fact, 19.3 kb, not 16.5 kb as previously reported. The newly defined region contains an intron that may be alternatively spliced and seven polyadenylation signal sequences. Sequences in the newly defined region show overall sequence similarity with the 3′ terminal region of mouse Xist, and three subregions exhibit quite high sequence conservation. Interestingly, the new intron spans the first two subregions that are absent in one of the two isoforms of mouse Xist. Taken together, we revise the structure of human XIST cDNA and compare cDNA structures between human and mouse XIST/Xist. Received: 3 August 1999 / Accepted: 15 November 1999  相似文献   

16.
A cDNA clone (6PExt 1.2) encoding a novel extensin was isolated from a cDNA library made from 6 h old mesophyll protoplasts of Nicotiana sylvestris. The screening was performed with a heterologous probe from carrot. The encoded polypeptide showed features characteristic of hydroxyproline-rich glycoproteins such as Ser-(Pro)4 repeats and a high content in Tyr and Lys residues. The presence of four Tyr-X-Tyr-Lys motifs suggests the possibility for intramolecular isodityrosine cross-links whereas three Val-Tyr-Lys motifs may participate in intermolecular cross-links. The analysis of genomic DNA gel blots using both the N. sylvestris and the carrot clones as probes showed that the 6PExt 1.2 gene belongs to a complex multigene family encoding extensin and extensin-related polypeptides in N. sylvestris as well as in related Nicotianeae including a laboratory hybrid. This was confirmed by the analysis of RNA gel blots: a set of mRNAs ranging in size from 0.3 kb to 3.5 kb was found by the carrot extensin probe. The 6PExt 1.2 probe found a 1.2 kb mRNA in protoplasts and in wounded tissues as well as a 0.9 kb mRNA which seemed to be stem-specific. The gene encoding 6PExt 1.2 was induced by wounding in protoplasts, in leaf strips and after Agrobacterium tumefaciens infection of stems.  相似文献   

17.
Upper internode elongation in rice is an important agronomic trait. Well-known mutants with an elongated uppermost internode (eui) are important germplasms for developing unsheathed-panicle male-sterile lines in hybrid rice breeding. We finely mapped the eui1 gene and identified its candidate gene using in silico analysis based on previous research work and rice genomic sequence data. The rice eui1 gene was mapped to two overlapping BAC clones, OSJNBa0095J22 and OSJNBb0099O15, between the markers AC40 and AC46, that were 0.64 cM apart and spanned approximately 152 kb. A simple sequence repeat (SSR) marker AC41 that cosegregated with eui1 was located in an intron of a putative cytochrome P450-related gene. In silico analysis suggested that this encoded the cytochrome CYP714D1. Allelic sequencing confirmed that EUI1 corresponded to this P450 gene. A gamma ray-induced eui1 mutant carried a deletion in exon II of the EUI1 gene, and resulted in a frame-shift deletion that produced a truncated polypeptide. We conclude that the EUI1 gene controlling the upper internode elongation in rice is 9804 bp long, and comprises two exons and one intron. The length of the cDNA is 1931 bp containing a 1734 bp ORF, a 110 bp 5′-UTR and a 87 bp 3′-UTR. The ORF encodes an unknown 577 amino acid functional protein, that appears to be a member of the cytochrome P450 family. Hongli Ma, Shubiao Zhang: These authors contributed equally to this work  相似文献   

18.
A cDNA encoding farnesyl diphosphate synthase, an enzyme that synthesizes C15 isoprenoid diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate, was cloned from an Arabidopsis thaliana cDNA library by complementation of a mutant of Saccharomyces cerevisiae deficient in this enzyme. The A. thaliana cDNA was also able to complement the lethal phenotype of the erg20 deletion yeast mutant. As deduced from the full-length 1.22 kb cDNA nucleotide sequence, the polypeptide contains 343 amino acids and has a relative molecular mass of 39689. The predicted amino acid sequence presents about 50% identity with the yeast, rat and human FPP synthases. Southern blot analyses indicate that A. thaliana probably contains a single gene for farnesyl diphosphate synthase.  相似文献   

19.
Summary The structural gene, nirS, for the respiratory nitrite reductase (cytochrome cd 1) from Pseudomonas stutzeri was identified by (i) sequencing of the N-terminus of the purified protein and partial sequencing of the cloned gene, (ii) immunoscreening of clones from a lambda gt11 expression library, (iii) mapping of the transposon Tn5 insertion site in the nirS mutant strain MK202, and (iv) complementation of strain MK202 with a plasmid carrying the insert from an immunopositive lambda clone. A mutation causing overproduction of cytochrome c 552 mapped on the same 8.6 kb EcoRI fragment within 1.7 kb of the mutation affecting nirS. Two mutations affecting nirD, which cause the synthesis of an inactive cytochrome cd 1 lacking heme d 1, mapped 1.1 kb apart within a 10.5 kb EcoRI fragment contiguous with the fragment carrying nirS. Nir mutants of another type that had low level synthesis of cytochrome cd 1, had Tn5 insertions within an 11 kb EcoRI fragment unlinked to the nirS + and nirD + fragments. Cosmid mapping provided evidence that nirS and nirD, and the previously identified gene cluster for nitrous oxide respiration are closely linked. The nirS gene and the structural gene for nitrous oxide reductase, nosZ, are transcribed in the same direction and are separated by approximately 14 kb. Several genes for copper processing are located within the intervening region.  相似文献   

20.
We have cloned and sequenced the gene encoding the largest subunit of RNA polymerase II (RPB1) from Arabidopsis thaliana and partially sequenced genes from soybean (Glycine max). We have also determined the nucleotide sequence for a number of cDNA clones which encode the carboxyl terminal domains (CTDs) of RNA polymerase II from both soybean and Arabidopsis. The Arabidopsis RPB1 gene encodes a polypeptide of approximately 205 kDa, consists of 12 exons, and encompasses more than 8 kb. Predicted amino acid sequence shows eight regions of similarity with the largest subunit of other prokaryotic and eukaryotic RNA polymerases, as well as a highly conserved CTD unique to RNA polymerase II.The CTDs in plants, like those in most other eukaryotes, consist of tandem heptapeptide repeats with the consensus amino acid sequence PTSPSYS. The portion of RPB1 which encodes the CTD in plants differs from that of RPB1 of animals and lower eukaryotes. All the plant genes examined contain 2–3 introns within the CTD encoding regions, and at least two plant genes contain an alternatively spliced intron in the 3 untranslated region. Several clustered amino acid substitutions in the CTD are conserved in the two plant species examined, but are not found in other eukaryotes. RPB1 is encoded by a multigene family in soybean, but a single gene encodes this subunit in Arabidopsis and most other eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号