首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A gallocyanin method for demonstrating cement lines in thin, undecalcified sections of bone has been developed that is compatible with prestaining with ostcochrome before plastic embedding. After sectioning at 5 pm on the Jung K heavy duty microtome, the sections are attached to a microslide using Haupt's adhesive mounting medium, placed on a slide warmer at 37 C until completely dry, and deplasticized in xylene at 45 C for 16-44 hr. Sections are stained with 0.15% gallocyanin-5% chrome alum solution for 30 min, followed by staining in buffered Villanueva blood stain for 1-1 1/2 hr, quickly dehydrated, differentiated in equal parts xylene and 100% ethanol, cleared, and mounted in Eukitt's medium. Reversal lines appear as thin, scalloped, blue or purple lines approximately 0.3 pm wide, and arrest lines as thick, homogeneous, straight or evenly curved, dark blue or purple lines approximately 2 pm wide. The method also demonstrates abnormal halo volumes around ostcocytes, old and new bone matrix, osteoid seams, and the granular mineralization front at the osteoid-bone interface. It promises to be valuable in the study of age-related bone loss, osteoporosis, and metabolic bone disease.  相似文献   

2.
A technique for demonstrating cement lines in thin, undecalcified transverse sections of cortical bone has been developed. Cortical bone samples are processed and embedded undecalcified in methyl methacrylate plastic. After sectioning at 3-5 microns, cross-sections are transferred to a glass slide and flattened for 10 min. Sections of cortical bone are stained for 20 sec free-floating in a fresh solution of 1% toluidine blue dissolved in 0.1% formic acid. The section is dehydrated in t-butyl alcohol, cleared in xylene, and mounted with Eukitt's medium. Reversal lines appear as thin, scalloped, dark blue lines against a light blue matrix, whereas bone formation arrest lines are thicker with a smooth contour. With this technique cellular detail, osteoid differentiation, and fluorochrome labels are retained. Results demonstrate the applicability of a one-step staining method for cement lines which will facilitate the assessment of bone remodeling activity in thin sections of undecalcified cortical bone.  相似文献   

3.
A technique for demonstrating cement lines in thin, undecalcified, transverse sections of cortical bone has been developed. Cortical bone samples are processed and embedded undecalcified in methyl methacrylate plastic. After sectioning at 3-5 microns, cross-sections are transferred to a glass slide and flattened for 10 min. Sections of cortical bone are stained for 20 sec free-floating in a fresh solution of 1% toluidine blue dissolved in 0.1% formic acid. The section is dehydrated in t-butyl alcohol, cleared in xylene, and mounted with Eukitt's medium. Reversal lines appear as thin, scalloped, dark blue lines against a light blue matrix, whereas bone formation arrest lines are thicker with a smooth contour. With this technique cellular detail, osteoid differentiation, and fluorochrome labels are retained. Results demonstrate the applicability of a one-step staining method for cement lines which will facilitate the assessment of bone remodeling activity in thin sections of undecalcified cortical bone.  相似文献   

4.
A technique for demonstrating cement lines in thin, undecalcified transverse sections of cortical bone has been developed. Cortical bone samples are processed and embedded undecalcified in methyl methacrylate plastic. After sectioning at 3-5 μm, cross-sections are transferred to a glass slide and flattened for 10 min. Sections of cortical bone are stained for 20 sec free-floating in a fresh solution of 1% toluidine blue dissolved in 0.1% formic acid. The section is dehydrated in t-butyl alcohol, cleared in xylene, and mounted with Eukitt's medium. Reversal lines appear as thin, scalloped, dark blue lines against a light blue matrix, whereas bone formation arrest lines are thicker with a smooth contour. With this technique cellular detail, osteoid differentiation, and fluorochrome labels are retained. Results demonstrate the applicability of a one-step staining method for cement lines which will facilitate the assessment of bone remodeling activity in thin sections of undecalcified cortical bone.  相似文献   

5.
The deoxyrihonucleic acid (DNA) of chromatin undergoar depurinization on mild acid hydrolysis with a picric acid-formaldehyde mixture (Bouin's fluid). The apurinic acid thus formed is degraded by condensation with aniline and is lost from tissue sections, but ribonucleic acid (RNA) in nucleoli and cytoplasm is well preserved. Technique: Fi in Carnoy's fluid (ethanol:acetic acid 3:1 or ethanol:chloroform:acetic acid 6:3:1) or in aldehydes (10% formalin or 2.5% glutaraldehyde bsered to pH 7.0). Hydrolyse deparaEnii sections 12-24 hr at 27-50 C in Bouin's fluid, wash in distilled water, immerse in 25% (v/v) acetic acid, treat 1 hr at 27-30 C with 10% (v/v) dine in 25% acetic acid, wash in 25% acetic acid and then in water. Stain 10-40 min with 03% toluidine blue in 0.05 M potassium biphthalate bder (pH 4.0); rinse in distilled water, pass to 10% (w/v) ammonium molybdate for 1 min, rinse again in water and pass through tert-butanol and xylene to a synthetic resin. Chromatin and chromosomes are pale green; RNA in nucleoli and cytoplasm deep purple.  相似文献   

6.
The method reported here was designed to produce paraffin serial sections as thin as 5 Mm of insects or other arthropods with a hard cuticle. Heads and abdomens of Apis mellifera, Eristalomyia tenax and Tenebrio molitor were fixed with Schaffer's liquid, dehydrated with 80% ethanol, 90% ethanol, two changes of 100% isopropanol (2 hr each) and 12 hr in a 1:1 mixture of paraffin (58 C melting point) at 60 C. They were molded in paraffin after 12 hr of infiltration under a partial vacuum at 60 C. Large body openings of objects were sealed with paraffin to prevent infiltration of solvents.

Thereafter, the outer paraffin was removed manually and with xylene (15 min); the cuticle was rehydrated with 100% isopropanol and 100% ethanol (15 min each). The objects were then treated with Sputofluol (Merck; a mixture of NaOH and NaCIO) until they became white or their colorless endocuticle was stainable with aniline blue WS (C.I. 42755) after rinsing in a 50% acetic acid solution (v/v). They were then dehydrated with 100% ethanol and 100% isopropanol (15 min each) and subsequently re-embedded in paraffin. They were molded, sectioned, stained and mounted as usual.  相似文献   

7.
Night blue will stain the mast cells of rat, mouse and hamster selectively if alcohol differentiation is controlled. The technical steps are: Dewax paraffin sections with xylene, 2 changes; air dry; 2% Na2SO4, 3-5 sec; 0.5% night blue in 10% ethanol, 1 hr at 60°C; rinse in water; 9% HNO3, 15 sec; water 1-5 min; 70% ethanol, 2 changes, 30 sec each; wash; 0.01% safranin, 3-5 sec; rinse, blot, air dry, mount in synthetic resin. A clear orthochromatic stain of the mast-cell granules occurs. Acid fixation prevents the staining reaction.  相似文献   

8.
Sections of 6 μ from tissues fixed in Susa or in Bouin's fluid (without acetic acid) and embedded in paraffin were attached to slides with Mayer's albumen, dried at 37 C for 12 hr, deparaffinized and hydrated. The sections fixed in Susa were transferred to a I2-K1 solution (1:2:300 ml of water); rinsed in water, decolorized in 5% Na2S2O3; washed in running water, and rinsed in distilled water. Those fixed in Bouin's were transferred to 80% alcohol until decolorized, then rinsed in distilled water. All sections were stained in 1% aqueous phloxine, 10 min; rinsed in distilled water and transferred to 3% aqueous phosphotungstic acid, 1 min; rinsed in distilled water; stained 0.5 min in 0.05 azure II (Merck), washed in water; and finally, nuclear staining in Weigert's hematoxylin for 1 min was followed by a rinse in distilled water, rapid dehydration through alcohols, clearing in xylene and covering in balsam or a synthetic resin. In the completed stain, islet cells appear as follows: A cells, purple; B cells, weakly violet-blue; D cells, light blue with evident granules; exocrine cells, grayish blue with red granules.  相似文献   

9.
Night blue will stain the mast cells of rat, mouse and hamster selectively if alcohol differentiation is controlled. The technical steps are: Dewax paraffin sections with xylene, 2 changes; air dry; 2% Na2SO4, 3-5 sec; 0.5% night blue in 10% ethanol, 1 hr at 60°C; rinse in water; 9% HNO3, 15 sec; water 1-5 min; 70% ethanol, 2 changes, 30 sec each; wash; 0.01% safranin, 3-5 sec; rinse, blot, air dry, mount in synthetic resin. A clear orthochromatic stain of the mast-cell granules occurs. Acid fixation prevents the staining reaction.  相似文献   

10.
Techniques are described for freeze-sectioning a wide range of both fresh and fixed plant tissues. Gelatin-antifreeze media are used to support but not infiltrate the tissue during sectioning. At cryostat temperatures of -10 to -15 C, 15% gelatin (w/v) containing 0.8% dimethyl sulfoxide (DMSO), or 1.5% ethanediol (ethylene glycol), or 2% glycerol is used. Lower concentrations of gelatin and higher concentrations of antifreezes are required for sectioning at -24 C. Petri plates of media are stored at 2 C, and used by simply melting a hole in the medium. Fresh tissues can be placed directly in the hole, or prefrozen at temperature of liquid nitrogen, or equilibrated in antifreeze solution, before freeze-sectioning in the gelatin antifreeze medium. Many plant tissues have highly vacuolated cells and need equilibration in antifreeze solutions prior to freeze-sectioning. Fixed tissues are rehydrated and washed in water or buffer for 15-24 hr before equilibrating in a 10% solution of either DMSO, ethanediol or glycerol (named in order of rapidity of equilibration). Pretreatment in 10% DMSO is usually for 1-6 hr at 2 C for histochemical studies; or in 10% ethanediol or glycerol for 15-24 hr at either room temperature or 37 C for morphological studies. These methods permit serial cryostat sections free from freezing and thawing artifacts to be cut as thin as 2 μ.  相似文献   

11.
Celloidin sections from formalin-fixed brain and spinal cord of primates are stored in 70% alcohol after cutting, soaked in 2% pyridine in 50% alcohol for 6-8 hr at 37 C, and transferred to 1% concentrated NH4OH in 50% alcohol 15-18 hr at 20-25 C. After washing and flattening, the sections are transferred to 1% silver protein solution containing 30 ml of 0.2 M H3BO3/100 ml. Impregnation is accomplished in 50 ml screw-top jars, 50 mm in diameter, which are filled to a depth of 35 mm, and have 1 gm of copper foil, 0.002 inch thick added. The foil is folded in loose accordion-fashion, pierced and threaded, cleaned in 5% HNO3, rinsed in distilled water, and suspended in the solution just above the sections by fastening the thread to the jar lid. The sections are impregnated for 24 hr at 37 C, rinsed in distilled water, reduced in a solution of 5% Na2SO3 and 1% hydroquinone for 10 min, washed in distilled water and toned in 0.2% gold chloride for 5 min. After rinsing in distilled water, the sections are transferred to 1% oxalic acid for 45-60 sec, washed in distilled water and placed in 5% Na2S2O3 for 5 min. Sections are then washed, dehydrated to 95% alcohol, cleared in terpineol, followed by 3 changes in xylene, and mounted.  相似文献   

12.
A method of preparing bone or teeth for sectioning is described which involves the following steps: 48 hr. in 1:10 formalin; 24 hr. in 70% alcohol; decalcification for several days in 10% HNO3; rinsing and transferring to 2% potassium alum for 12 hr.; rinsing and treating with 5% NaHCO3 (or Li2CO3) for 24 hr.; washing for 12-24 hr.; then passing through ascending grades of alcohol to xylene. In the case of developing teeth, a slightly different procedure is recommended: fixation in Heidenhain's Susa till hard tissue is decalcified; 24 hr. in 96% alcohol (with three changes); 24 hr. in absolute alcohol (with one change); clearing in xylene or chloroform, and embedding in paraffin.  相似文献   

13.
Paraffin sections of formol-fixed tissues stained 4-18 hr in 70% alcohol containing 1% orcein and 1% of concentrated (12 N) HCl by volume yield the familiar purple brown elastin and red nuclei on a pink background. When sections so stained are transferred directly from the stain to 70% alcohol containing 0.02% ferric chloride (FeCl3·6 H2O) or 0.02% copper sulfate (CuSO4·5 H2O) for a 15 sec to 3 min period, elastin coloration is changed to black or reddish black and chromatin staining to reddish black. The procedure can be counterstained with picro-methyl blue to yield blue collagen and reticulum or with our flavianic acid, ferric chloride, acid fuchsin mixture to give deep yellow background and deep red collagen.  相似文献   

14.
After recordings had been taken from a microelectrode used for mapping nerve impulses, a current of 100 μa from the positive pole of a direct current generator was run through the electrode for 5 sec while it was still in place. On terminating the experiment, in which the use of several electrodes was possible, 50-75 ml of a 1:1 mixture of 4% potassium ferrocyanide and 4% acetic acid was injected into each common carotid artery, and the brain left in situ for 0.5 hr. It was then removed and the electrode-bearing part fixed 5-6 hr in a 1:1 mixture of 40% formalin and 95% ethyl alcohol at 55 °C. This specimen was washed in running water 5-10 min, the electrodes removed and frozen sections of 40-80 μ cut and placed in 95% alcohol. Sections were stained 5-10 min at 25-30°C in 10% silver nitrate solution in 75-80% alcohol acidified by 3-4 drops of glacial acetic acid per 50 ml, washed 4-5 sec in each of 2 baths of 95% alcohol, and reduced while being agitated constantly in a 2% solution of pyrogallol and 6-7% formalin in 75-80% alcohol. Washing in 95% alcohol, clearing in clove oil or methyl salicylate followed by xylene and mounting in synthetic resin or balsam completed the process. Sites of electrolysis at the tips of electrodes (under magnification) were blue before silver staining and black after staining. Axons stained brown to black on a yellow background.  相似文献   

15.
Tissues from representative mammals, amphibia and invertebrates were fixed for 5-24 hr in either an aqueous solution of 8% p-toluene sulfonic acid (PTSA) or in 10% formalin to which 5 gm PTSA/100 ml had been added, and processed through embedding in polyethylene glycol 400 distearate in the usual manner. Sections cut at 4-6 μ were floated on 0.2% gelatin containing 1.25% formalin, and spread and dried on slides at a temperature not exceeding 25 C. Wax was removed with xylene, and the sections brought to water through ethanol as usual. The working staining solution was made from three stock solutions: A. Chlorantine fast blue 2RLL, 0.5%; B. Cibacron turquoise blue G-E, 0.5%; C. Procion red M-P, 0.5%—each of which was dissolved in 98.5 ml of distilled water to which 0.5 ml of glacial acetic acid and 0.5 ml of propylene glycol monophenyl ether (a fungicide) had been added. For use, the three solutions were mixed in the proportions: A, 3; B, 4; and C, 3 volumes. Staining time was uncritical, 10-30 min usually sufficing for 6 μ, sections. The chief feature of the staining is the differentiation of oxygenated and nonoxygenated red blood corpuscles, in reds and blues respectively. Connective tissue stained blue or blue-green and mucin, green. Nuclei and cytoplasm stain according to their condition at the time of fixation. The mixed stain keeps well, remaining active after 2 yr of storage.  相似文献   

16.
Sections of 0.5-2 μ thickness are affixed to slides with albumen adhesive, thoroughly dried, and placed in xylene or toluene for 1 hr, then brought through ethanol to water. Sections of tissue fixed in OsO4 are treated first in 0.1% KMnO4, then with 1.0% oxalic acid, and after rinsing, incubated at 60 C for 12-24 hr in hematoxylin (Harris's or Ehrlich's) and counterstained 10-15 min with 0.5% phloxine B. Permanent preparations are made by clearing and mounting in a synthetic resin. The method requires only easily available reagents and is suitable for routine processing of epoxy sections.  相似文献   

17.
Fundus of stomach is fixed in 10% formalin (aqueous), Bouin's fluid or 5% trichloracetic acid (aqueous). It is embedded in paraffin, and 7μ sections are cut, mounted, deparaffinized and passed to 70% alcohol and then stained as follows: Mordant 3 min. in saturated Bismarck brown in 70% alcohol. Rinse in 70% alcohol, pass to distilled water, then overstain (2 hr.) in aniline blue, 0.5% solution in 2.5% acetic acid (aqueous). Precipitate the anilin blue with 0.5 ml. of 0.1% methyl violet solution (aqueous) dropped on die slide. Leave on 2 min. or less. Wash and differentiate in 70% alcohol. (Parietal cells dark blue). Stain 30 min. in a mixture of hematein, 0.10g.; A1C13 cryst., 0.05g.; and 70% alcohol 50 ml., prepared just before use and not filtered. Rinse in 70% alcohol and differentiate with an alcoholic extract of saffron (2 g. saffron pistils in 100 ml. 90% alcohol at 60°C. for 6 hr.) while observing the progress of differentiation microscopically. Dehydrate by dropping a 0.1 % solution of acetic acid in absolute alcohol on the section for 30 sec., followed by pure absolute alcohol, xylene, and covering in balsam.  相似文献   

18.
Fundus of stomach is fixed in 10% formalin (aqueous), Bouin's fluid or 5% trichloracetic acid (aqueous). It is embedded in paraffin, and 7μ sections are cut, mounted, deparaffinized and passed to 70% alcohol and then stained as follows: Mordant 3 min. in saturated Bismarck brown in 70% alcohol. Rinse in 70% alcohol, pass to distilled water, then overstain (2 hr.) in aniline blue, 0.5% solution in 2.5% acetic acid (aqueous). Precipitate the anilin blue with 0.5 ml. of 0.1% methyl violet solution (aqueous) dropped on die slide. Leave on 2 min. or less. Wash and differentiate in 70% alcohol. (Parietal cells dark blue). Stain 30 min. in a mixture of hematein, 0.10g.; A1C13 cryst., 0.05g.; and 70% alcohol 50 ml., prepared just before use and not filtered. Rinse in 70% alcohol and differentiate with an alcoholic extract of saffron (2 g. saffron pistils in 100 ml. 90% alcohol at 60°C. for 6 hr.) while observing the progress of differentiation microscopically. Dehydrate by dropping a 0.1 % solution of acetic acid in absolute alcohol on the section for 30 sec., followed by pure absolute alcohol, xylene, and covering in balsam.  相似文献   

19.
Decapitate the anther and squeeze out its contents into a drop of water on a clean slide coated with Haupt's adhesive. Let slides air dry and stain the preparations for 4-6 hr in 0.005% spirit-soluble aniline blue, prepared in 50% ethanol. Pass the slides through acetone, 10 min; 1:1 mixture of acetone and xylene, 5 min; and xylene. Mount in a resinous medium. The technique is effective for both fresh anthers and anthers fixed in FAA, Carnoy's fluid, 1:3 acetic alcohol, and 10% formalin (commercial). For fixed anthers, follow customary methods of paraffin embedding and microtomy.  相似文献   

20.
J M Herr 《Stain technology》1982,57(3):161-169
Ovules cleared in benzyl benzoate-4 1/2 clearing fluid can be permanently mounted in Piccolyte or Permount by replacing the cleaning fluid with absolute ethanol, upgrading the ovules in mixtures of ethanol and xylene (3:1, 2:2, 1:3, and xylene), and mounting them in either mountant under the supported coverglass of a Raj slide. Optical saggittal sections through the ovules resemble microtome sections in that the protoplasts are slightly shrunken away from the cell walls. The artifact is common in permanently mounted sections; fixation and paraffin infiltration are usually cited as the causes--its appearance in the whole-mounted ovules is caused by xylene. Although miscible with the clearing fluid, Euparal is the least satisfactory of the standard mountants for permanent preparations of cleared ovules and is best used with an equal quantity of clearing fluid for semipermanent preparations. A large quantity of Euparal in the mountant produces pronounced shrinkage. A method for permanently mounting cleared ovules with the clearing image unaltered employs a mountant which contains the ingredients of Spurr low viscosity embedding medium. Vinylcyclohexene dioxide (10 drops) is combined with diglycidyl ether of polypropylglycol (6 drops) and nonenyl succinic anhydride (26 drops). Ovules treated for 24 hr in benzyl benzoate-4 1/2 clearing fluid are passed through a graded series of clearing fluid-epoxy medium mixtures (3:1, 2:2, 1:3, and pure epoxy medium) at intervals of 14 minutes. One drop of dimethylaminoethanol, the cure accelerator, is then added to the epoxy medium and the ovules are mounted and covered immediately on a Raj slide. The preparation is cured in an oven at 60 C for 24 hr and observed with phase contrast or Nomarski interference optics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号