首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ErbB受体亚族属于受体型酪氨酸激酶(RTK)超家族中的I亚族,对于胚胎发育是必需的,并与腺体肿瘤的癌变有关。ErbB受体亚族有4个成员,它们在上皮和神经等组织内表达。本综述了ErbB受体亚族的研究概况,以及ErbB受体介导的信号转导机制及其在癌变中的作用机理等研究进展。  相似文献   

2.
G蛋白偶联受体转激活酪氨酸激酶受体机制   总被引:1,自引:0,他引:1  
蒋明  郭卉  赵菡  周爱云  林昕  许婵娟  刘剑峰 《现代生物医学进展》2011,(Z1):4767-4769,4771,4800
G蛋白偶联受体(G-protien coupled receptors,GPCRs)和酪氨酸激酶受体(receptor tyrosine kinases,RTKs)是体内两类重要的受体家族,介导着绝大多数信号事件。GPCRs能够"绑架"RTKs进行信号转导,即GPCRs能够在没有外加RTKs配体的情况下激活RTKs,这种现象称为转激活。作为转激活的核心过程,GPCR调控RTK磷酸化主要采取RTK配体依赖模式和非RTK配体依赖模式。不同的G蛋白亚型、酪氨酸磷酸激酶、酪氨酸磷酸酶(protein-tyrosine phosphatases,PTPs)以及活性氧自由基(reactiveoxygen species,ROS)均在此过程中具有重要作用。GPCR和RTK还能形成信号复合体(signaling complex)从而实现蛋白质之间的动态相互作用。对转激活的研究为GPCR靶点药物开发提供了新思路。  相似文献   

3.
酪氨酸激酶受体Eph亚族的研究进展   总被引:2,自引:0,他引:2  
酪氨酸激酶受体(RTK)参与细胞生长、分化、胚胎发育及细胞内信号传递等过程,具有相当重要的生理功能.目前已发现50多种RTK基因分属于14种亚族,Eph亚族是其中最大的家族,由14个基因组成,一些基因主要在脑的发育中表达,另一些则在各种组织中广泛表达.最近该亚族胞外配体的发现为深入研究其生理功能打下基础.综述了Eph亚族成员的来源、表达及其配体的研究概况.  相似文献   

4.
信号分子磷脂酶C-γ(PLC-γ)被蛋白酪氨酸酶(PTK)激活催化水解磷脂酰肌醇4,5-二磷酸(PIP2)生成第二信使分子肌醇三磷酸(IP3)和二酰基甘油(DAG),参与受体酪氨酸激酶(RTK)介导的细胞分列、抗原与免疫细胞受体结合引起免疫反应及卵细胞受精等过程中的信号传递。  相似文献   

5.
T细胞通过抗原受体 (TCR)识别抗原后 ,经CD3分子激活多种蛋白酪氨酸激酶 (PTK)和胞质接头蛋白 ,从而活化一系列胞质激酶 ,如磷脂酰肌醇 3激酶 (PI3K)、磷脂酶Cγ(PLCγ)、Ras激酶等 ,再经一系列信号传递激活转录因子调节基因表达 ,使细胞表现功能。最近发现了一组TCR相关的跨膜接头蛋白 ,包括T细胞活化的连接分子 (linkerforactiva tionofTcells,LAT)、SHP2相互作用跨膜接头蛋白 (SHP2 interactingtransmembraneadaptorprotein ,SIT…  相似文献   

6.
过氧亚硝酸根与细胞信号转导   总被引:1,自引:0,他引:1  
生物系统中产生的过氧亚硝酸根(peroxynitrite,ONOO-)具有强氧化性,能够损伤多种生物大分子,产生细胞毒性。细胞通过激活信号通路产生应激反应,其中包括蛋白质酪氨酸激酶(PTK)依赖的多种路径,而ONOO-通过硝化或氧化作用调节酪氨酸的磷酸化。酪氨酸残基的硝化能直接影响酪氨酸的磷酸化,而磷酸酶的氧化将导致酪氨酸磷酸化/去磷酸化平衡的改变,ONOO-激活细胞信号转导通路的作用机制对认识其生理病理功能具有重要意义。  相似文献   

7.
陈尚武 《生命的化学》2001,21(5):379-381
免疫和造血细胞的生长、分化及其他功能受到细胞因子网络的控制。由于大多数细胞因子受体缺乏胞浆段的激酶结构域 ,配体依赖的酪氨酸磷酸化由非受体酪氨酸激酶来中介。细胞因子刺激后早期激活的主要酪氨酸激酶是Januskinase(JAK)家族。事实上 ,JAK STAT途径是许多细胞因子激活基因转录最重要机制之一。当细胞因子结合到细胞表面的受体 ,引起受体的二聚化 ,进而活化JAK激酶 ,活化的JAK激酶反过来磷酸化细胞因子受体 ,导致其他的信号分子如STAT家族蛋白的介入并被激活 ,活化的STAT转入细胞核 ,激活大量细…  相似文献   

8.
粘附斑激酶(FAK)及其信号通路研究进展   总被引:3,自引:0,他引:3  
粘附斑激酶(focal adhesion kinase,FAK)是一类胞质非受体蛋白酪氨酸激酶,属于蛋白酪氨酸激酶(protein tyrosine kinase)超家族,因而也称为PTKⅡ.FAK在细胞信号转导中处于十分重要的位置,它是胞内外信号出入的中枢,介导多条信号通路.FAK可以整合来自整合素、生长因子以及机械刺激等的信号,激活胞内PI3K/Akt、Ras/MAPK等信号通路,调节细胞生长.FAK还与胚胎发育、肿瘤发生与迁移有关.  相似文献   

9.
10.
原肌球蛋白相关激酶B(tropomyosin-related kinase B,TrkB)是一种神经营养性酪氨酸受体激酶,通过介导丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)、磷脂酶C-γ(phospholipase C-γ,PLC-γ)、磷脂酰肌醇3-激酶(pho...  相似文献   

11.
为探讨CpG寡脱氧核苷酸(CpG-oligodeoxynucleotides,CpG-ODN)激活中华绒螯蟹血细胞酚氧化酶原系统(prophenoloxidase system,proPO系统)的信号传导途径,使用一定剂量的CpGODN-1670、ODN-R以及几种细胞信号传导的激活剂或抑制剂体外处理中华绒螯蟹血细胞,通过检测胞内外酚氧化酶(PO)活性的变化,对CpG ODN触发proPO激活系统的信号传导途径进行评价。结果显示,ODN-1670与ODN-R均可触发蟹血细胞proPO激活系统,试验剂量的ODN-1670可促进血细胞内外已有的proPO转化为PO,而对proPO颗粒的释放具有一定的抑制作用;ODN-R则不仅可使proPO转化为PO,还可促进血细胞脱颗粒。两者的信号传导途径相似,可能都包含了G-蛋白介导的蛋白激酶C(PKC)途径,酪氨酸蛋白激酶(RTK)途径对ODN-1670的触发proPO激活系统的活化过程进行负调控。    相似文献   

12.
Jak—STAT信号转导机制   总被引:4,自引:0,他引:4  
许多细胞因子受体尽管缺少激酶结构域,但与配体结合后仍能诱导蛋白质的酪氨酸磷酸化。近年来的研究证明这一过程是由Jak族蛋白质酪氨酸激酶的成员所介导的。Jak激酶通过和受体的近膜区域的相互作用而与之缔合。配体结合引起受体聚合以及Jak的酪氨酸磷酸化和激活,激活的Jak又使受体和STAT蛋白(信号转导物与转录激活剂)磷酸化、后直接参与基因转录的调控。本对这一新的胞内信号转导机制作一综述。  相似文献   

13.
Eph-ephrin介导反向信号传递的研究进展   总被引:1,自引:0,他引:1  
双向信号传递是细胞间通讯领域中新近阐明的机制,酪氨酸激酶受体-配体(Eph-ephrin)介导的双向信号传递是此机制中的一个重要代表.Eph酪氨酸激酶家族受体及其配体ephrin家族成员是在神经发育、血管新生等方面起重要作用的分子,通过Eph向细胞内传递的信号称为正向信号,通过其配体ephrin的信号称为反向信号.Ephrin家族又可根据分子结构分为2个亚家族,其中ephrinB为跨膜蛋白,可通过酪氨酸磷酸化依赖和PDZ结合结构域介导2种方式向胞内传递反向信号,活化FAK、JNK、Wnt等信号通路,ephrinA为糖基磷脂酰肌醇锚定蛋白,也具有反向信号传递功能.  相似文献   

14.
葡萄糖代谢稳态对维持动物健康水平至关重要.磷脂酰肌醇3-激酶(phosphoinositide 3-kinase,PI3K)是受体酪氨酸激酶(receptor tyrosine kinase,RTK)和G蛋白偶联受体(G protein-coupled receptor,GPCR)共同调控的下游效应因子.它能够磷酸化磷...  相似文献   

15.
Eph/Ephrin家族是受体酪氨酸激酶家族中的最大亚族,在生理和病理性血管形成中起重要作用。眼部血管生成是糖尿病视网膜病、早产儿视网膜等眼部疾病致盲的重要因素,Eph和Ephrin基因在上述眼部疾病中有不同程度表达改变。Eph受体及其配体Ephrin之间的双向信号机制是Eph-Ephrin发挥功能的主要方式。本文就Eph-Ephrin双向信号机制在眼部血管新生中的作用进行综述。  相似文献   

16.
近年来,关于酶在细胞癌变中所起的作用以及酶与癌基因产物的关系在国内外是十分重要的课题。从细胞增殖和癌变中酶的作用方面来考察,有两种重要的信息传递系统引人注目。一类是通过Ca~(++)和肌醇—1、4、5—三磷酸(IP_3)作为第二信使的系统;另一类是通过蛋白质的酪氨酸残基磷酸化进而引起细胞内反应的系统。参与第二信使系统的酶以蛋白激酶—C为代表,参与酪氨酸残基磷酸化系统的酶是酪氨酸(蛋白)激酶。蛋白激酶—C (一)蛋白激酶—C的激活蛋白激酶—C是存在于细胞液中的丝氨酸蛋白磷酸化酶。它被激活后则转移到膜上而起  相似文献   

17.
B细胞表面抗原受体(BCR)与其抗原或其它配体(如anti-μMcAb)的结合启动了B细胞的活化,BCR交联后,首先在其ITAM序列部位发生酪氨酸磷酸化,从而富集并激活Src家族蛋白质酪氨酸激酶(PTK),进而Src家族PTK将SykPTK等的酪氨酸磷化而活化,使信号传递下去,在此过程中,还有ForγRⅡb和CD22等分子通过富集蛋白质酪氨酸磷酸酶PTPIC活化信号进行负调控,本文就此BCR信号转  相似文献   

18.
Pyk2介导的细胞信号通路   总被引:1,自引:0,他引:1  
酪氨酸蛋白激酶在细胞信号传递过程中起重要作用,由酪氨酸蛋白磷酸酶和酪氨酸蛋白激酶协同控制的酪氨酸的磷酸化是细胞生长、分化、凋亡、黏附和迁移等生理过程的重要调节机制。酪氨酸蛋白激酶Pyk2是黏着斑激酶家族成员,能被包括整合素在内的多种细胞外信号激活,参与多条信号通路的传递,在细胞信号转导过程中发挥重要作用。  相似文献   

19.
焦点粘着激酶的研究进展   总被引:2,自引:0,他引:2  
焦点粘着激酶是依赖于整合素的细胞信号转导通路的基础性信号传递分子.通过磷酸化酪氨酸位点和富脯氨酸序列,活化的焦点粘着激酶与细胞骨架蛋白、Src族激酶、磷酸肌醇-3激酶、Graf以及多种衔接子蛋白相互作用,调节细胞的粘附、迁移、增殖和分化.  相似文献   

20.
成纤维细胞生长因子(FGFs)对于细胞代谢的刺激作用是通过双受体系统(dual-receptor system)介导的.该系统包括一个酪氨酸激酶受体家族(FGFRs)及肝素硫酸蛋白多糖(HSPG).目前已知有4种FGFRs基因,其转录过程表现出剪切多样性.FGFs与FGFRs的结合表现出交叉特异性.HSPG可促进FGFs与FGFRs的结合和受体二聚体的形成,并增强FGFs对细胞调控的精度.FGFRs通过激活不同下游信号分子影响细胞有丝分裂、神经细胞轴突生长、胚胎发育等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号