首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurement of pulmonary gas uptake and elimination is often performed, using nitrogen as marker gas to measure gas flow, by applying the Haldane transformation. Because of the inability to measure nitrogen with conventional equipment, measurement is difficult during inhalational anesthesia. A new method is described, which is compatible with any inspired gas mixture, in which fresh gas and exhaust gas flows are measured using carbon dioxide as an extractable marker gas. A system was tested in eight patients undergoing colonic surgery for automated measurement of uptake of oxygen, nitrous oxide, isoflurane, and elimination of carbon dioxide with this method. Its accuracy and precision were compared with simultaneous measurements made with the Haldane transformation and corrected for predicted nitrogen excretion by the lungs. Good agreement was obtained for measurement of uptake or elimination of all gases studied. Mean bias was -0.003 l/min for both oxygen and nitrous oxide uptake, -0.0002 l/min for isoflurane uptake, and 0.003 l/min for carbon dioxide elimination. Limits of agreement lay within 30% of the mean uptake rate for nitrous oxide, within 15% for oxygen, within 10% for isoflurane, and within 5% for carbon dioxide. The extractable marker gas method allows accurate and continuous measurement of gas uptake and elimination in an anesthetic breathing system with any inspired gas mixture.  相似文献   

2.
OBJECTIVE--To determine the mechanisms and thereby appropriate management for apparent life threatening events treated with cardiopulmonary resuscitation in infants and young children. DESIGN--Prospective clinical and physiological study. SETTING--Royal Brompton Hospital or in patients'' homes, or both. SUBJECTS--157 Patients referred at median age 2.8 months (range 1 week to 96 months), 111 (71%) had recurrent events, 44 were born preterm, 19 were siblings of infants who had died suddenly and unexpectedly, and 18 were over 12 months old. INTERVENTIONS--Multichannel physiological recordings, including oxygenation, in hospital (n = 150) and at home (n = 61). Additional recordings with electroencephalogram, video, or other respiratory measures were used to confirm diagnoses. Management involved monitoring of oxygen at home, additional inspired oxygen, anticonvulsant treatment, or child protection procedures. MAIN OUTCOME MEASURES--Abnormalities on recordings compared to published normal data and their correlation with clinical events; sudden death. RESULTS--53 of 150 patients had abnormalities of oxygenation on hospital recordings, 28 of whom had an accompanying clinical event. Home recordings produced physiological data from 34 of 61 patients during subsequent clinical events. Final diagnoses were reached in 77 patients: deliberate suffocation by a parent (18), hypoxaemia induced by epileptic seizure (10), fabricated history and data (Munchausen syndrome by proxy; seven), acute hypoxaemia of probable respiratory origin (40), and changes in peripheral perfusion and skin colour without hypoxaemia (two). Four patients died: three suddenly and unexpectedly (none on home oxygen monitors) and one from pneumonia. CONCLUSIONS: Identification of mechanisms is essential to the appropriate management of infants with apparent life threatening events.  相似文献   

3.
The authors have devised a cart for use during cardiopulmonary resuscitation, the prime purpose of which is to bring every essential piece of equipment, and all the drugs generally required, to the immediate area to revive a pulseless and/or apneic patient with the least effort and confusion. The strategically placed contents of the cart are described.The regular use of such a cart, following appropriate formal staff training and instruction in resuscitation procedures, and frequent reading of an appropriate instruction poster, as well as the reporting of all these events on an appropriate protocol, will increase the effectiveness of acute resuscitation in hospital.  相似文献   

4.
The evolution of biomedical technology has led to an extraordinary use of medical devices in health care delivery. During the last decade, clinical engineering departments (CEDs) turned toward computerization and application of specific software systems for medical equipment management in order to improve their services and monitor outcomes. Recently, much emphasis has been given to patient safety. Through its Medical Device Directives, the European Union has required all member nations to use a vigilance system to prevent the reoccurrence of adverse events that could lead to injuries or death of patients or personnel as a result of equipment malfunction or improper use. The World Health Organization also has made this issue a high priority and has prepared a number of actions and recommendations. In the present workplace, a new integrated, Windows-oriented system is proposed, addressing all tasks of CEDs but also offering a global approach to their management needs, including vigilance. The system architecture is based on a star model, consisting of a central core module and peripheral units. Its development has been based on the integration of 3 software modules, each one addressing specific predefined tasks. The main features of this system include equipment acquisition and replacement management, inventory archiving and monitoring, follow up on scheduled maintenance, corrective maintenance, user training, data analysis, and reports. It also incorporates vigilance monitoring and information exchange for adverse events, together with a specific application for quality-control procedures. The system offers clinical engineers the ability to monitor and evaluate the quality and cost-effectiveness of the service provided by means of quality and cost indicators. Particular emphasis has been placed on the use of harmonized standards with regard to medical device nomenclature and classification. The system's practical applications have been demonstrated through a pilot evaluation trial.  相似文献   

5.
Experimental data suggest the presence of sensory receptors specific to the nasopharynx that may reflexly influence respiratory activity. To investigate the effects of inspired air temperature on upper airway dilator muscle activity during nose breathing, we compared phasic genioglossus electromyograms (EMGgg) in eight normal awake adults breathing cold dry or warm humidified air through the nose. EMGgg was measured with peroral bipolar electrodes during successive trials of cold air (less than or equal to 15 degrees C) and warm air (greater than or equal to 34 degrees C) nasal breathing and quantified for each condition as percent activity at baseline (room temperature). In four of the subjects, the protocol was repeated after topical nasal anesthesia. For all eight subjects, mean EMGgg was greater during cold air breathing than during baseline (P less than 0.005) or warm air breathing (P less than 0.01); mean EMGgg during warm air breathing was not significantly changed from baseline. Nasal anesthesia significantly decreased the mean EMGgg response to cold air breathing. Nasal airway inspiratory resistance, measured by posterior rhinomanometry in six subjects under similar conditions, was no different for cold or warm air nose breathing [cold 1.4 +/- 0.7 vs. warm 1.4 +/- 1.1 (SD) cmH2O.l-1.s at 0.4 l/s flow]. These data suggest the presence of superficially located nasal cold receptors that may reflexly influence upper airway dilating muscle activity independently of pressure changes in awake normal humans.  相似文献   

6.
Elevated arterial Pco(2) (hypercapnia) has a major effect on central nervous system oxygen toxicity in diving with a closed-circuit breathing apparatus. The purpose of the present study was to follow up the ability of divers to detect CO(2) and to determine the CO(2) retention trait after 1 year of active oxygen diving with closed-circuit apparatus. Ventilatory and perceptual responses to variations in inspired CO(2) (range: 0-5.6 kPa, 0-42 Torr) during moderate exercise were assessed in Israeli Navy combat divers on active duty. Tests were carried out on 40 divers during the novice oxygen diving phase (ND) and the experienced oxygen diving phase. No significant changes were found between the two phases for the minimal mean inspired Pco(2) that could be detected. The mean (with SD in parentheses) end-tidal Pco(2) during exposure to an inspired Pco(2) of 5.6 kPa (42 Torr) was significantly higher in the novice diving phase than in the experienced diving phase [8.1 kPa (SD 0.7), 62 Torr (SD 5) and 7.8 kPa (SD 0.6), 59 Torr (SD 4), respectively; P < or = 0.001]. One year of shallow oxygen diving activity with a closed-circuit apparatus does not affect the ability to detect CO(2) nor does it lead to increased CO(2) retention; rather, it may even bring about a decrease in this trait. This finding suggests that acquiring experience in oxygen diving with a closed-circuit apparatus at shallow depths does not place the diver at a greater risk of central nervous system oxygen toxicity due to CO(2) retention.  相似文献   

7.
The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing and the tissue nitrogen pressure. To quantify the contribution of oxygen to bubble growth at altitude, micro oxygen bubbles (containing 0% nitrogen) were injected into the adipose tissue of rats depleted from nitrogen by means of preoxygenation (fraction of inspired oxygen = 1.0; 100%) and the bubbles studied at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently until they disappeared from view at a net disappearance rate (0.02 mm(2) × min(-1)) significantly faster than for similar bubbles at 25 kPa altitude (0.01 mm(2) × min(-1)). At 25 kPa, most bubbles initially grew for 2-40 min, after which they shrank and disappeared. Four bubbles did not disappear while at 25 kPa. The results support bubble kinetic models based on Fick's first law of diffusion, Boyles law, and the oxygen window effect, predicting that oxygen contributes more to bubble volume and growth during hypobaric conditions. As the effect of oxygen increases, the lower the ambient pressure. The results indicate that recompression is instrumental in the treatment of aDCS.  相似文献   

8.
Maximum expiratory flows during breathing of a 80% helium-20% oxygen mixture (HeO2) are commonly used to determine the site of airflow limitation. To do this test the flowmeter is usually calibrated with the inspired gases, and the airflows are measured during expiration. We tested the adequacy of such calibration maneuvers by using two identical flowmeters in series through a bag-in-box system. Different gases were flowed though the test pneumotachograph into a bag contained in a closed box connected to the second pneumotachograph. Distension of the bag caused air to flow from the box through this second pneumotachograph. Our results indicate that when breathing HeO2, the flowmeter correction for different gas viscosity, compared with air, should be 20% for inspired HeO2 and 12% for expired gases. Inspired gases therefore cannot be used to calibrate the flowmeters when assessing expiratory flows.  相似文献   

9.
《Small Ruminant Research》2002,43(2):167-178
This study compares cardiopulmonary, hematological, serum biochemical and behavioral effects of sevoflurane, isoflurane or halothane anesthesia in spontaneously breathing, conventionally medicated goats. Six male adult goats were anesthetized repeatedly at 2-week intervals with three anesthetics. Goats were administered atropine (0.1 mg/kg) intramuscularly, and 10 min later, induced to anesthesia by an intravenous infusion of thiopental (mean 14.3 mg/kg). After intubation, goats were anesthetized with halothane, isoflurane or sevoflurane in oxygen and maintained at surgical depth of anesthesia for 3 h. Recovery from anesthesia with sevoflurane was more rapid than that with isoflurane or halothane. Time-related hypercapnia and acidosis were observed during halothane anesthesia, but not observed during sevoflurane or isoflurane anesthesia. Both hypercapnia and acidosis during sevoflurane anesthesia did not differ from isoflurane anesthesia, but were less during halothane anesthesia, especially at prolonged maintenance period. There were no significant differences between anesthetics in respiration and heart rates, arterial pressures, hematological and serum biochemical values. It was concluded that sevoflurane is an effective inhalant for use in goats showing the most rapid recovery from anesthesia, and that cardiopulmonary effects of sevoflurane are similar to isoflurane than halothane.  相似文献   

10.
Pulmonary manifestations of oxygen toxicity were studied and quantified in rats breathing >98% O(2) at 1, 1.5, 2, 2.5, and 3 ATA to test our hypothesis that different patterns of pulmonary injury would emerge, reflecting a role for central nervous system (CNS) excitation by hyperbaric oxygen. At 1.5 atmosphere absolute (ATA) and below, the well-recognized pattern of diffuse pulmonary damage developed slowly with an extensive inflammatory response and destruction of the alveolar-capillary barrier leading to edema, impaired gas exchange, respiratory failure, and death; the severity of these effects increased with time over the 56-h period of observation. At higher inspired O(2) pressures, 2-3 ATA, pulmonary injury was greatly accelerated but less inflammatory in character, and events in the brain were a prelude to a distinct lung pathology. The CNS-mediated component of this lung injury could be attenuated by selective inhibition of neuronal nitric oxide synthase (nNOS) or by unilateral transection of the vagus nerve. We propose that extrapulmonary, neurogenic events predominate in the pathogenesis of acute pulmonary oxygen toxicity in hyperbaric oxygenation, as nNOS activity drives lung injury by modulating the output of central autonomic pathways.  相似文献   

11.
Many causes for the adult respiratory distress syndrome (ARDS) have been reported, all with common pathologic, pathophysiologic and biochemical end results. The final common pathway may involve changes in lung content of a critical enzyme, superoxide dismutase, or alterations in surfactant metabolism, or both. The early assumption that the disorder is partially due to oxygen toxicity from inspired oxygen concentrations greater than 60 percent is consistent with findings of recent biochemical studies. Although the lung normally maintains its alveoli dry, during ARDS increased permeability of small pulmonary vessels results in primary pulmonary edema, in contrast to edema from increased vascular pressure. These data have been obtained mainly in animals; whether they apply to humans with ARDS is not certain. Tissue oxygenation is improved by increasing end-expiratory pressure in an animal model of ARDS, more effectively during spontaneous breathing than during mechanical ventilation. During spontaneous breathing, adverse ventilatory effects were caused by stimulation of pulmonary reflexes.  相似文献   

12.
Fetal breathing adaptation to prolonged hypoxaemia in sheep   总被引:1,自引:0,他引:1  
Prolonged (6 days) fetal hypoxaemia was produced by placing pregnant ewes in an environmental chamber. A constant flow of N2 into the chamber reduced the fraction of inspired oxygen (Fi02) to 0.139 +/- 0.001, simulating an altitude of 4270 m. This reduced maternal PaO2 by about 39 mmHg and PaCO2 by nearly 5 mmHg, which produced a hypocapnic (delta PaCO2 = -5 mmHg) hypoxaemia (delta PaO2 = -8 mmHg) in the fetus. An analysis of the first 4 h of breathing recorded each day (1800-2200 h; start of hypoxaemia: 1200 h) showed that the incidence (12 +/- 2.0 min/day) during the first day of hypoxaemia was significantly less (P less than 0.05) than that (24 +/- 3.1 min/h) during the same time of the control day. By the second day, breathing had returned to normal. Further analysis indicated that a normal incidence of breathing may have occurred as early as 14 h after starting hypoxaemia. These results suggest that fetal breathing movements adapt rather quickly to this degree of hypocapnic hypoxaemia.  相似文献   

13.
We have recently shown that hyperoxemia alone or combined with umbilical cord occlusion causes continuous breathing and arousal in the fetal sheep (Baier, Hasan, Cates, Hooper, Nowaczyk & Rigatto, 1990). We have not however analyzed the changes in the pattern of breathing associated with these events. To do this, we measured the changes in breathing pattern, electrocortical activity and behaviour on 29 occasions in 15 fetal sheep in late gestation. Fetuses were studied during rest, and during lung distention (about 30 cm H2O) with 100% nitrogen (control), 17% oxygen, 100% oxygen and umbilical cord occlusion. Lung distention was obtained using a high frequency oscillator (Senko Co) and in some fetuses a stroke volume of 0 to 20 cm H2O was used to keep PaCO2 near-constant. We found that lung distention with nitrogen or 17% oxygen did not alter the pattern of breathing or behaviour. In 12 out of 34 (35%) experiments 100% oxygen induced continuous breathing, PaO2 increasing to about 250 torr. In the remaining 22 experiments, PaO2 increased to about 100 torr only and breathing was not continuous but it became continuous upon cord occlusion; with occlusion there was a further increase in PaO2 to 190 torr. The increased breathing with oxygen and occlusion was associated with an increase in breathing output (integral of EMGdi x f), an increase in inspiratory drive (integral of EMGdi/Ti), and a decrease in inspiratory (Ti) and expiratory (Te) times. In ten experiments PaCO2 was kept near-constant and the magnitude of the changes remained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Arousal and cardiopulmonary responses to hyperoxic hypercapnia in lambs   总被引:1,自引:0,他引:1  
Experiments were done to investigate the arousal and cardiopulmonary responses to hyperoxic hypercapnia in 8 lambs. Each lamb was anaesthetized and instrumented for recordings of electrocorticogram, electro-oculogram, nuchal and diaphragm electromyograms and measurements of arterial blood pressure and haemoglobin oxygen saturation. No sooner than 3 days after surgery, measurements were made in quiet sleep and active sleep during control periods when the animal was breathing 21% oxygen and during experimental periods of hyperoxic hypercapnia when the animal was breathing 10% carbon dioxide and 30% oxygen. Hyperoxic hypercapnia was terminated during each epoch by returning the inspired gas mixture to 21% oxygen once the animal aroused from sleep. Arousal occurred from both sleep states during hyperoxic hypercapnia but was delayed in active sleep compared to quiet sleep (active sleep 58 +/- 17 s; quiet sleep 21 +/- 10 s; mean +/- 1SD). There were no significant changes in heart rate or blood pressure during hyperoxic hypercapnia before arousal. However, respiratory rate and diaphragm electrical activity did increase during hyperoxic hypercapnia before arousal. Thus, our data provide evidence that hypercapnia can initiate arousal from sleep in young lambs. The mechanisms responsible for this response are yet to be determined.  相似文献   

15.
We assessed the seasonal variations in the effects of hypercarbia (3 or 5% inspired CO2) on cardiorespiratory responses in the bullfrog Rana catesbeiana at different temperatures (10, 20 and 30 degrees C). We measured breathing frequency, blood gases, acid-base status, hematocrit, heart rate, blood pressure and oxygen consumption. At 20 and 30 degrees C, the rate of oxygen consumption had a tendency to be lowest during winter and highest during summer. Hypercarbia-induced changes in breathing frequency were proportional to body temperature during summer and spring, but not during winter (20 and 30 degrees C). Moreover, during winter, the effects of CO2 on breathing frequency at 30 degrees C were smaller than during summer and spring. These facts indicate a decreased ventilatory sensitivity during winter. PaO2 and pHa showed no significant change during the year, but PaCO2 was almost twice as high during winter than in summer and spring, indicating increased plasma bicarbonate levels. The hematocrit values showed no significant changes induced by temperature, hypercarbia or season, indicating that the oxygen carrying capacity of blood is kept constant throughout the year. Decreased body temperature was accompanied by a reduction in heart rate during all four seasons, and a reduction in blood pressure during summer and spring. Blood pressure was higher during winter than during any other seasons whereas no seasonal change was observed in heart rate. This may indicate that peripheral resistance and/or stroke volume may be elevated during this season. Taken together, these results suggest that the decreased ventilatory sensitivity to hypercarbia during winter occurs while cardiovascular parameters are kept constant.  相似文献   

16.
Six harbor seals with percutaneous tracheostomies were artificially ventilated while immersed. Changes in the oxygen content of the inspired gas and in the minute-volume altered the magnitude of the bradycardia observed after the animal had been submerged for 30 s. The average heart rate in five seals changed from 16.7 (S.D. = 4.4) beats per minute during artificial ventilation with N2, to 58.7 (S.D. = 10.4) beats per minute while breathing air, but this cardiac chronotropic effect of oxygen was blocked by addition of 7% CO2 to the inspired gas. Ventilatory minute-volumes above approximately 3 litres/min caused cardiac acceleration in a manner related to ventilation; below this, changes in heart rate were inconsistent. While being artificially ventilated with air, the average heart rate in five seals changed from 16.5 beats per minute to 73.4 beats per minute as ventilation was increased from 0 to greater than 8 litres/min. These experiments demonstrate that O2, CO2, and ventilatory minute-volume have significant effects upon the heart rate of seals under water and suggest the presence of chemoreceptor-mediated effects on heart rate during submersion.  相似文献   

17.

Background

Beach chair positioning during general anesthesia is associated with a high incidence of cerebral desaturation; poor neurological outcome is a growing concern. There are no published data pertaining to changes in cerebral oxygenation seen with increases in the inspired oxygen fraction or end-tidal carbon dioxide in patients anesthetized in the beach chair position. Furthermore, the effect anesthetic agents have has not been thoroughly investigated in this context. We plan to test the hypothesis that changes in inspired oxygen fraction or end-tidal carbon dioxide correlate to a significant change in regional cerebral oxygenation in anesthetized patients in beach chair position. We will also compare the effects that inhaled and intravenous anesthetics have on this process.

Methods/design

This is a prospective within-group study of patients undergoing shoulder arthroscopy in the beach chair position which incorporates a randomized comparison between two anesthetics, approved by the Institutional Review Board of the University of Michigan, Ann Arbor. The primary outcome measure is the change in regional cerebral oxygenation due to sequential changes in oxygenation and ventilation. A sample size of 48 will have greater than 80% power to detect an absolute 4-5% difference in regional cerebral oxygenation caused by changes in ventilation strategy. The secondary outcome is the effect of anesthetic choice on cerebral desaturation in the beach chair position or response to changes in ventilation strategy. Fifty-four patients will be recruited, allowing for drop out, targeting 24 patients in each group randomized to an anesthetic. Regional cerebral oxygenation will be measured using the INVOS 5100C monitor (Covidien, Boulder, CO). Following induction of anesthesia, intubation and positioning, inspired oxygen fraction and minute ventilation will be sequentially adjusted. At each set point, regional cerebral oxygenation will be recorded and venous blood gas analysis performed. The overall statistical analysis will use a repeated measures analysis of variance with Tukey??s HSD procedure for post hoc contrasts.

Discussion

If simple maneuvers of ventilation or anesthetic technique can prevent cerebral hypoxia, patient outcome may be improved. This is the first study to investigate the effects of ventilation strategies on cerebral oxygenation in patients anesthetized in beach chair position.

Trial registration

NCT01535274  相似文献   

18.

Background

The purpose of this study was to compare the effects of 0.5 fraction of inspired oxygen (FiO2) and >0.95 FiO2 on pulmonary gas exchange, shunt fraction and oxygen delivery (DO2) in dorsally recumbent horses during inhalant anesthesia. The use of 0.5 FiO2 has the potential to reduce absorption atelectasis (compared to maximal FiO2) and augment alveolar oxygen (O2) tensions (compared to ambient air) thereby improving gas exchange and DO2. Our hypothesis was that 0.5 FiO2 would reduce ventilation-perfusion mismatching and increase the fraction of pulmonary blood flow that is oxygenated, thus improving arterial oxygen content and DO2.

Results

Arterial partial pressures of O2 were significantly higher than preanesthetic levels at all times during anesthesia in the >0.95 FiO2 group. Arterial partial pressures of O2 did not change from preanesthetic levels in the 0.5 FiO2 group but were significantly lower than in the >0.95 FiO2 group from 15 to 90 min of anesthesia. Alveolar to arterial O2 tension difference was increased significantly in both groups during anesthesia compared to preanesthetic values. The alveolar to arterial O2 tension difference was significantly higher at all times in the >0.95 FiO2 group compared to the 0.5 FiO2 group. Oxygen delivery did not change from preanesthetic values in either group during anesthesia but was significantly lower than preanesthetic values 10 min after anesthesia in the 0.5 FiO2 group. Shunt fraction increased in both groups during anesthesia attaining statistical significance at varying times. Shunt fraction was significantly increased in both groups 10 min after anesthesia but was not different between groups. Alveolar dead space ventilation increased after 3 hr of anesthesia in both groups.

Conclusions

Reducing FiO2 did not change alveolar dead space ventilation or shunt fraction in dorsally recumbent, mechanically ventilated horses during 3 hr of isoflurane anesthesia. Reducing FiO2 in dorsally recumbent isoflurane anesthetized horses does not improve oxygenation or oxygen delivery.  相似文献   

19.
Semi-closed underwater breathing apparatus has commonly been used among military and commercial divers, but never available for recreational divers because of complicated operations, difficulties of maintenance, and expensiveness. Nippon Sanso K.K. has newly deployed a semi-closed circuit underwater breathing apparatus called the "eOBA". It is especially designed for divers to enjoy shallow (max. 5 m) and short (10 min.) dives. This eOBA was evaluated from manned testing based on physiological requirements for the apparatus. Four male and four female subjects participated in the three test trials. Subjects maintained their position at the depths of 2 m and 4 m for 10 min. and e exercised on the underwater ergometer at the depth of 2.4 m. The pressure at the mouthpiece, tidal volume, breathing rate, the inspired O2 level, CO2 level were monitored on breath-by-breath basis. The inspired O2 level ranged from 45% (at exercise) to 60% (at rest) and the inspired CO2 level were kept less than 1.0% in the most cases. The P-V loop indicated relatively little external work of breathing (less than 0.1 kg.m/l) and allowable peak pressures (less than 25cmH2O). Results show that the eOBA meets the standards sufficiently under the test conditions and is a safe apparatus for recreational divers if it is properly used.  相似文献   

20.
It is well known that the level of anesthesia obtained by intraperitoneal injection is variable and may alter cardiac function. In this study, we compared the effects of different anesthetics on cardiac function with the conscious state using high-resolution two-dimensional echocardiography in nonischemic and ischemic mice. Eighty-four mice were tested before and after surgery with ligation of the coronary artery. All 84 mice were studied in the conscious state and under high-dose intraperitoneal anesthesia. Twenty-two of 84 mice were studied under low-dose intraperitoneal anesthesia. Another 22 mice were also studied under gas anesthesia and spontaneous breathing. Experiments in the conscious state were performed by two investigators before the administration of anesthesia: one investigator held the animal and the transducer and the other operated the ultrasound equipment. Left ventricular systolic function was measured, and measurements obtained after surgery were compared with infarcted areas assessed by histological staining. Results showed that both high- and low-dose intraperitoneal anesthesia significantly reduced heart rates and left ventricular contractility in both pre- and postsurgical mice as opposed to conscious mice (P < 0.01). There were significantly higher correlation coefficients between mean fractional area change (FAC) and infarcted area in conscious state compared with high-dose intraperitoneal anesthesia (P < 0.05). The correlation coefficient between FAC and infarcted area during gas anesthesia was also significantly higher compared with high-dose intraperitoneal anesthesia (P < 0.05). In conclusion, conscious experiments or the use of gas anesthesia is preferred for echocardiographic assessment of cardiac function in mice because intraperitoneal injection significantly induces a significant reduction in heart rate and left ventricular systolic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号