首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of Tn5386, a Tn916-related mobile element   总被引:1,自引:0,他引:1  
In recent work, we described excision of a large genomic region from Enterococcus faecium D344R resulting from the interaction of Tn916 and a related transposon designated Tn5386. In the present study, we present and analyze the complete sequence of Tn5386. Tn5386 is 29,451 bp in length. Fifteen of its 30 open reading frames are analogous to ORFs found in Tn916. Significant differences include a series of ORFs with homology to lantibiotic immunity genes in the same location where tetM is found in Tn916, insertion of a Group II intron and an ORF with similarities to previously described surface exposed collagen adhesion proteins. Our results indicate that Tn5386 falls within the Tn916 family of transposons, and in place of tetM encodes a novel region that may confer resistance to lantibiotics.  相似文献   

2.
A 58.7-kb nonconjugative plasmid (pKQ1) previously reported in a clinical isolate of Enterococcus faecium was found to contain both a tetM and an erythromycin resistance (erm) determinant. The plasmid contained a region homologous to the A, F, H, and G HincII fragments of Tn916. However, the 4.8-kb B fragment of Tn916 which contained the tetM determinant was replaced by a 7.3-kb fragment, and the 3.6-kb HincII C fragment of Tn916 was missing. An element homologous to Tn917 was juxtaposed to the truncated Tn916-like element. The Tn917-like element was similar in size to the erm transposon Tn917 as determined by a ClaI restriction digest which spanned approximately 99% of the transposon. When Bacillus subtilis or Streptococcus sanguis were transformed with pKQ1, no zygotically induced transposition of the tetM element was detected. Similarly no transposition of the Tn917-like element was detected.  相似文献   

3.
In recent work, we described the excision of a large genomic region from Enterococcus faecium D344R in which the sequence from "joint" regions suggested that excision resulted from the interaction of conjugative transposon Tn916 and the related mobile element Tn5386. In the present study, we examined the ability of integrases and integrase-excisase combinations from Tn916 and Tn5386 to promote the excision of constructs consisting of the termini of Tn916, Tn5386, and the VanB mobile element Tn5382. Integrases alone from either Tn916 or Tn5386 promoted the circularization of constructs from the three different transposons, even when the different termini used in the constructs were discordant in their transposon of origin. The termini of Tn916 and Tn5382 found in all joints were consistent with previously identified Tn916 and Tn5382 termini. Substantial variation was seen in the integrase terminus of Tn5386 used to form joints, regardless of the integrase that was responsible for circularization. Variability was observed in joints formed from Tn5386 constructs, in contrast to joints observed with the termini of Tn916 or Tn5382. The coexpression of excisase yielded some variability in the joint regions observed. These data confirm that integrases from some Tn916-like elements can promote circularization with termini derived from heterologous transposons and, as such, could promote excision of large genomic regions flanked by such elements. These findings also raise interesting questions about the sequence specificities of the C terminals of Tn916-like integrases, which bind to the ends and facilitate strand exchange.  相似文献   

4.
We describe Tn5386, a novel ca.-29-kb Tn916-like mobile element discovered to occur in ampicillin-resistant, Tn916-containing Enterococcus faecium D344R. PCR amplification experiments after overnight growth with or without tetracycline revealed "joint" regions of circularized Tn5386 composed of 6-bp sequences linking different transposon termini. In one case (no tetracycline), the termini were consistent with those derived by target site analysis of the integrated element. In the other case, the termini were virtually identical in distance from the integrase binding regions, as seen with Tn916. These data are consistent with a model in which one PCR product results from the action of Tn5386 integrase, whereas the other results from the action of the Tn916 integrase on Tn5386. Spontaneous conversion of D344R to an ampicillin-susceptible phenotype (D344SRF) was associated with a 178-kb deletion extending from the left end of Tn5386 to the left end of Tn916. Examination of the Tn5386 junction after the large deletion event suggests that the deletion resulted from an interaction between the nonintegrase ends of Tn5386 and Tn916. The terminus of Tn5386 identified in this reaction suggested that it may have resulted from the activity of the Tn916 integrase (Int(Tn916)). The "joint" of the circular element resulting from this excision was amplifiable from D344R, the sequence of which revealed a heteroduplex consistent with Int(Tn916)-mediated excision. In contrast, Tn5386 joints amplified from ampicillin-susceptible D344SRF revealed ends consistent with Tn5386 integrase activity, reflecting the absence of Tn916 from this strain. Tn5386 represents a new member of the Tn916 transposon family. Our data suggest that excision of Tn5386 can be catalyzed by the Tn916 integrase and that large genomic deletions may result from the interaction between these heterologous elements.  相似文献   

5.
C E Rubens  L M Heggen 《Plasmid》1988,20(2):137-142
The tetracycline resistance gene encoded within the transposon Tn916 was replaced with the gene encoding erythromycin resistance from the plasmid pVA838. The derivative transposon of Tn916 was designated Tn916 delta E and was introduced into the Streptococcus faecalis chromosome by protoplast transformation. The conjugation/transposition functions of Tn916 delta E were similar to those observed for Tn916 in S. faecalis and Tn916 delta E was capable of self-conjugation at frequencies similar to those of other S. faecalis and Group B Streptococcus. This transposon will be useful for mutagenesis studies in gram-positive organisms, especially in those species where erythromycin resistance is a more desirable selectable marker.  相似文献   

6.
In matings between Lactococcus lactis strains, the conjugative transposons Tn916 and Tn919 are found in the chromosome of the transconjugants in the same place as in the chromosome of the donor, indicating that no transposition has occurred. In agreement with this, the frequency of L. lactis transconjugants from intraspecies matings is the same whether the donor contains the wild-type form of the transposon or the mutant Tn916-int1, which has an insertion in the transposon's integrase gene. However, in intergeneric crosses with Bacillus subtilis or Enterococcus faecalis donors, Tn916 and Tn919 transpose to different locations on the chromosome of the L. lactis transconjugants. Moreover, Tn916 and Tn919 could not be transferred by conjugation from L. lactis and B. subtilis, E. faecalis or Streptococcus pyogenes. This suggests that excision of these elements does not occur in L. lactis. When cloned into E. coli with adjacent chromosomal DNA from L. lactis, the conjugative transposons were able to excise, transpose and promote conjugation. Therefore, the inability of these elements to excise in L. lactis is not caused by a permanent structural alteration in the transposon. We conclude that L. lactis lacks a factor required for excision of conjugative transposons.  相似文献   

7.
The conjugative transposon Tn916 encodes a protein called INT(Tn916) which, based on DNA sequence comparisons, is a member of the integrase family of site-specific recombinases. Integrase proteins such as INT(lambda), FLP, and XERC/D that promote site-specific recombination use characteristic, conserved amino acid residues to catalyze the cleavage and ligation of DNA substrates during recombination. The reaction proceeds by a two-step transesterification reaction requiring the formation of a covalent protein-DNA intermediate. Different requirements for homology between recombining DNA sites during integrase-mediated site-specific recombination and Tn916 transposition suggest that INT(Tn916) may use a reaction mechanism different from that used by other integrase recombinases. We show that purified INT(Tn916) mediates specific cleavage of duplex DNA substrates containing the Tn916 transposon ends and adjacent bacterial sequences. Staggered cleavages occur at both ends of the transposon, resulting in 5' hydroxyl protruding ends containing coupling sequences. These are sequences that are transferred with the transposon from donor to recipient during conjugative transposition. The nature of the cleavage products suggests that a covalent protein-DNA linkage occurs via a residue of INT(Tn916) and the 3'-phosphate group of the DNA. INT(Tn916) alone is capable of executing the strand cleavage step required for recombination during Tn916 transposition, and this reaction probably occurs by a mechanism similar to that of other integrase family site-specific recombinases.  相似文献   

8.
M R Natarajan  P Oriel 《Plasmid》1991,26(1):67-73
A gene for thermostable amylase has been inserted at the BstXI site of Tn916. Mating experiments demonstrated that unlike Tn916, the recombinant transposon, designated Tn916A, could transfer from Escherichia coli to Bacillus stearothermophilus BR219 in broth matings, resulting in chromosomal integration of the transposon and expression of the amylase at significant levels.  相似文献   

9.
Conjugative transposition of transposon Tn916 has been shown to proceed by excision of the transposon in the donor strain and insertion of this element in the recipient. This process requires the product of the transposon int gene. We report here the surprising finding that the int gene is required only in the donor during conjugative transposition. We find that Tn916 int-1, whose int gene has been inactivated by an insertion mutation, transposes when a complementing wild-type int gene is present only in the donor during mating. When the int+ gene is present in a plasmid and is expressed from the spac promoter, conjugative transposition is very inefficient. However, when the Int+ function is supplied from a coresident distantly linked Tn916 tra-641 mutant, which is defective in a function required for conjugation, efficient conjugative transposition of Tn916 int-1 occurs. This suggests either that Int is not required for integration of Tn916 in gram-positive bacteria or that the protein is transferred from the donor to the transconjugant during the mating event. When the nonconjugative plasmid pAT145 was present in the donor, it was rarely cotransferred with Tn916. This suggests that complete fusion of mating cells is not common during conjugative transposition.  相似文献   

10.
The origin of transfer (oriT) of the 18-kb conjugative transposon Tn916 has been localized to a 466-bp region which spans nucleotides 15215 to 15681 on the transposon map. The oriT lies within an intercistronic region between open reading frames ORF20 and ORF21 that contains six sets of inverted repeats ranging from 10 to 20 bp in size. The segment contains three sequences showing identity in 9 of 12 bp to the consensus nicking site (nic) of the IncP family of conjugative plasmids found in gram-negative bacteria. Overlapping one of these sequences is a region similar to the nic site of the F plasmid. Functionality was based on the ability of the oriT-containing sequence to provide a cis-acting mobilization of chimeras involving the shuttle vector pWM401 in response to activation in trans by an intact chromosome-borne transposon Tn916 delta E. Cloned segments of 466 or 376 nucleotides resulted in unselected cotransfer of the plasmid at levels of about 40% when selection was for Tn916 delta E, whereas a 110-bp segment resulted in cotransfer at a frequency of about 7%. Mobilization was specific in that gram-positive plasmids, such as pAD1 and pAM beta 1, and the gram-negative plasmids pOX38 (a derivative of F) and RP1 did not mobilize oriT-containing chimeras.  相似文献   

11.
Heterobivalent tyrosine recombinases play a prominent role in numerous bacteriophage and transposon recombination systems. Their enzymatic activities are frequently regulated at a structural level by excisionase factors, which alter the ability of the recombinase to assemble into higher-order recombinogenic nucleoprotein structures. The Tn916 conjugative transposon spreads antibiotic resistance in pathogenic bacteria and is mobilized by a heterobivalent recombinase (Tn916Int), whose activity is regulated by an excisionase factor (Tn916Xis). Unlike the well-characterized (lambda)Xis excisionase from bacteriophage lambda, Tn916Xis stimulates excision in vitro and in Escherichia coli only modestly. To gain insights into this functional difference, we have performed in vitro DNA-binding studies of Tn916Xis and Tn916Int, and we have solved the solution structure of Tn916Xis. We show that the heterobivalent Tn916Int protein is capable of bridging the DR2-type and core-type sites on the left arm of the tranpsoson. Consistent with the notion that Tn916Int is regulated only loosely, we find that Tn916Xis binding does not alter the stability of DR2-Tn916Int-core bridges or the ability of Tn916Int to recognize the arms of the transposon in vitro. Despite a high degree of divergence at the primary sequence level, we show that Tn916Xis and (lambda)Xis adopt related prokaryotic winged-helix structures. However, they differ at their C termini, with Tn916Xis replacing the flexible integrase contacting tail found in (lambda)Xis with a positively charged alpha-helix. This difference provides a structural explanation for why Tn916Xis does not interact cooperatively with its cognate integrase in vitro, and reveals how subtle changes in the winged-helix fold can modulate the functional properties of excisionase factors.  相似文献   

12.
The conjugative transposon Tn916 and a derivative Tn916 delta E was transferred from Bacillus subtilis into Clostridium difficile CD37 by filter mating. All the C. difficile transconjugants appeared to contain one copy of the transposon integrated into the same position in the genome. Transposition from the original site of integration was not observed. Like Tn916 the transferable tetracycline resistance determinant (Tc-CD) of C. difficile has a preferred site of integration in C. difficile and is homologous with Tn916 along the whole length of Tn916. However comparisons of the distribution of TaqI and Sau3AI sites in the homologous regions of the two elements did not demonstrate any hybridizing fragments in common.  相似文献   

13.
Transfer of the conjugative transposon Tn916 from the chromosome of Bacillus subtilis to a transposon-free Streptococcus pyogenes strain occurs at the same frequency as transfer to a Tn916-containing recipient. This rules out a model for conjugal transfer of Tn916 in which a copy of the element in the recipient represses transposition of a copy introduced by conjugation. Homology-directed integration of the incoming transposon into the resident one is less frequent than insertion elsewhere in the chromosome. This shows that after conjugation, transposition occurs more frequently than homologous recombination. However, because transconjugants arising from homologous recombination can be selected, it is possible to use Tn916 as a shuttle for gram-positive organisms for which there is no easy means of introducing DNA.  相似文献   

14.
The binding of Tn916 Xis protein to its specific sites at the left and right ends of the transposon was compared using gel mobility shift assays. Xis formed two complexes with different electrophoretic mobilities with both right and left transposon ends. Complex II, with a reduced mobility, formed at higher concentrations of Xis and appeared at an eightfold lower Xis concentration with a DNA fragment from the left end of the transposon rather than with a DNA fragment from the right end of the transposon, indicating that Xis has a higher affinity for the left end of the transposon. Methylation interference was used to identify two G residues that were essential for binding of Xis to the right end of Tn916. Mutations in these residues reduced binding of Xis. In an in vivo assay, these mutations increased the frequency of excision of a minitransposon from a plasmid, indicating that binding of Xis at the right end of Tn916 inhibits transposon excision. A similar mutation in the specific binding site for Xis at the left end of the transposon did not reduce the affinity of Xis for the site but did perturb binding sufficiently to alter the pattern of protection by Xis from nuclease cleavage. This mutation reduced the level of transposon excision, indicating that binding of Xis to the left end of Tn916 is required for transposon excision. Thus, Xis is required for transposon excision and, at elevated concentrations, can also regulate this process.  相似文献   

15.
Genetic organization of the bacterial conjugative transposon Tn916.   总被引:40,自引:18,他引:22       下载免费PDF全文
Tn916, which encodes resistance to tetracycline, is a 16.4-kilobase conjugative transposon originally identified on the chromosome of Streptococcus faecalis DS16. The transposon has been cloned in Escherichia coli on plasmid vectors, where it expresses tetracycline resistance; it can be reintroduced into S. faecalis via protoplast transformation. We have used a lambda::Tn5 bacteriophage delivery system to introduce Tn5 into numerous sites within Tn916. The Tn5 insertions had various effects on the behavior of Tn916. Some insertions eliminated conjugative transposition but not intracellular transposition, and others eliminated an excision step believed to be essential for both types of transposition. A few inserts had no effect on transposon behavior. Functions were mapped to specific regions on the transposon.  相似文献   

16.
Tn5397 is a conjugative transposon that was originally isolated from Clostridium difficile. Previous analysis had shown that the central region of Tn5397 was closely related to the conjugative transposon Tn916. However, in this work we obtained the DNA sequence of the ends of Tn5397 and showed that they are completely different to those of Tn916. Tn5397 did not contain the int and xis genes, which are required for the excision and integration of Tn916. Instead, the right end of Tn5397 contained a gene, tndX, that appears to encode a member of the large resolvase family of site-specific recombinases. TndX is closely related to the TnpX resolvase from the mobilizable but nonconjugative chloramphenicol resistance transposons, Tn4451 from Clostridium perfringens and Tn4453 from C. difficile. Like the latter elements, inserted copies of Tn5397 were flanked by a direct repeat of a GA dinucleotide. The Tn5397 target sites were also shown to contain a central GA dinucleotide. Excision of the element in C. difficile completely regenerated the original target sequence. A circular form of the transposon, in which the left and right ends of the element were separated by a GA dinucleotide, was detected by PCR in both Bacillus subtilis and C. difficile. A Tn5397 mutant in which part of tndX was deleted was constructed in B. subtilis. This mutant was nonconjugative and did not produce the circular form of Tn5397, indicating that the TndX resolvase has an essential role in the excision and transposition of Tn5397 and is thus the first example of a member of the large resolvase family of recombinases being involved in conjugative transposon mobility. Finally, we showed that introduction of Tn916 into a strain containing Tn5397 induced the loss of the latter element in 95.6% of recipients.  相似文献   

17.
Few genetic systems for studying mycoplasmas exist, but transposon Tn916 has been shown to transpose into the genomes of some species and can be used as an insertional mutagen. In the current study, the ability of Enterococcus faecalis to serve as a donor for the conjugative transfer of transposon Tn916 into the genome of the avian pathogen Mycoplasma gallisepticum strain PG31 was examined. Transconjugants were obtained at a frequency of > or =6 x 10(-8) per recipient CFU. To determine the transposon insertion site, an oligonucleotide primer corresponding to the 3' end of Tn916 was designed for the purpose of directly sequencing genomic DNA without PCR amplification. Using the direct sequencing approach, Tn916 was shown to insert into any of numerous sites in the M. gallisepticum genome. This is the first report of conjugal transposition of Tn916 into the M. gallisepticum genome. The ability to determine transposon insertion sites in mycoplasmas by genomic sequencing has not been previously described and allows rapid sequence analysis of transposon-generated mutants.  相似文献   

18.
Sequential transposition of Tn916 among Staphylococcus aureus protoplasts   总被引:4,自引:0,他引:4  
S C Yost  J M Jones  P A Pattee 《Plasmid》1988,19(1):13-20
Transposition of the Streptococcus faecalis conjugal tetracycline-resistance transposon Tn916 between S. aureus strains occurred when protoplasts of donor and recipient strains were regenerated together without prior fusion. Under these conditions, only Tn916 was transferred; spontaneous fusion of parental protoplasts is therefore unlikely to be responsible for Tn916 transfer. While the exact nature of this transfer remains unclear, it appears to resemble Tn916 conjugal transposition reported in S. faecalis. Evidence for sequential transpositions of Tn916 was obtained by 3-factorial transformation analyses and confirmed by DNA-DNA hybridizations. The ability of Tn916 to transpose within S. aureus and occupy diverse chromosomal sites demonstrates the value of this transposon in genetic studies of S. aureus.  相似文献   

19.
We report that the streptococcal resistance transposon, Tn916, is conjugally transferred to Clostridium tetani (Utrecht) in intergenic matings. Streptococcus faecalis CG180, harboring a 41-kb plasmid (pAM180) containing Tn916 (15 kb), transferred the transposon-associated tetracycline resistance (Tcr) to C. tetani in filter matings at a frequency of about 10(-4)/donor. An erythromycin resistance marker carried by pAM180 was not transferred, indicating lack of plasmid conjugation or stable inheritance of plasmid sequences. DNA extracted from C. tetani transconjugants was probed with radiolabeled Tn916 using Southern blot analysis and these results indicated that the transposon integrated at multiple host genomic sites. Tn916-carrying C. tetani strains were able to transfer Tcr to suitable recipient strains of C. tetani as well as to S. faecalis recipients. These results indicate that this transposon is able to be disseminated and expressed in obligately anaerobic gram-positive bacteria. Moreover, this system opens avenues for the implementation of transposon mutagenesis in this important pathogenic species.  相似文献   

20.
A mutant defective in aciduricity, GS5Tn1, was constructed following mutagenesis of Streptococcus mutans GS5 with the conjugative transposon Tn916. The mutant grew poorly at acidic pH levels and was sensitive to high osmolarity and elevated temperatures. These properties resulted from a single insertion of Tn916 into the GS5 chromosome, and the DNA fragment harboring the transposon was isolated into the cosmid vector, charomid 9-20. Spontaneous excision of Tn916 from the cosmid revealed that Tn916 inserted into a 8.6-kb EcoRI fragment. On the basis of the restriction analyses of insert fragments, it was found that Tn916 inserted into a 0.9-kb EcoRI-XbaI fragment. Nucleotide sequence analysis of this fragment indicated the presence of two open reading frames, ORF1 and ORF2. By using a marker rescue strategy, a 6.0-kb HindIII fragment including the target site for Tn916 insertion and the 5' end of ORF1 was isolated and sequenced. The deduced amino acid sequences of ORF1 and ORF2 showed significant homology with the diacylglycerol kinase and Era proteins, respectively, from Escherichia coli. Nucleotide sequence analysis of the Tn916 insertion junction region in the GS5Tn1 chromosome revealed that the transposon inserted near the 3' terminus of ORF1. Restoration of ORF1 to its original sequence in mutant GS5Tn1 was carried out following transformation with integration vector pVA891 containing an intact ORF1. The resultant transformant showed wild-type levels of aciduricity as well as resistance to elevated temperatures and high osmolarity. These results suggest that the S. mutans homolog of diacylglycerol kinase is important for adaptation of the organism to several environmental stress signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号