首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteasome activation as a critical event of thymocyte apoptosis   总被引:4,自引:0,他引:4  
Caspase activation may occur in a direct fashion as a result of CD95 death receptor crosslinking (exogenous pathway) or may be triggered indirectly, via a Bcl-2 inhibitable mitochondrial permeabilization event (endogenous pathway). Thymocyte apoptosis is generally accompanied by proteasome activation. If death is induced by DNA damage, inactivation of p53, overexpression of a Bcl-2 transgene, inhibition of protein synthesis, and antioxidants (N-acetylcyteine, catalase) prevent proteasome activation. Glucocorticoid-induced proteasome activation follows a similar pattern of inhibition except for p53. Caspase inhibition fails to affect proteasome activation induced by topoisomerase inhibition or glucocorticoid receptor ligation. In contrast, caspase activation (but not p53 knockout or Bcl-2 overexpression) does interfere with proteasome activation induced by CD95. Specific inhibition of proteasomes with lactacystin or MG123 blocks caspase activation at a pre-mitochondrial level if thymocyte apoptosis is induced by DNA damage or glucocorticoids. In strict contrast, proteasome inhibition has no inhibitory effect on the mitochondrial and nuclear phases of apoptosis induced via CD95. Thus, proteasome activation is a critical event of thymocyte apoptosis stimulated via the endogenous pathway yet dispensable for CD95-triggered death.  相似文献   

2.
The mechanisms that regulate nitric oxide (NO)-induced apoptosis, especially in T cell apoptosis, are largely uncharacterized. Here, we report that protection from NO-induced cell death by phorbol 12-myristate 13-acetate (PMA) is dependent on both p38 and extracellular signal-regulated kinase (ERK) activation. Exposure of Molt4 cells to NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) induced both apoptotic and necrotic modes of cell death along with a sustained increase in p38 kinase phosphorylation. However, the p38 inhibitor SB202190 only slightly protected Molt4 cells from NO toxicity. In contrast, PMA rapidly phosphorylated both p38 kinase and ERK, and the phosphorylation statuses were not altered in the presence of SNAP. Interestingly, although each mitogen-activated protein kinase (MAPK) inhibitor by itself had only a modest effect, the combination of inhibitors for both MAPKs almost completely abolished the protective effect of PMA. Furthermore, dominant negative or catalytically inactive variants that modulate p38 and ERK mimicked the effects of MAPK inhibitors. We located the action of p38 and ERK upstream of the p53/mitochondrial membrane potential loss and caspases cascade. Together, these findings suggest that the PMA-induced activations of ERK and p38 kinase are parallel events that are both required for inhibition of NO-induced death of Molt4 cells.  相似文献   

3.
Nitric oxide (NO) can trigger either necrotic or apoptotic cell death. We have used PC12 cells to investigate the extent to which NO-induced cell death is mediated by mitochondria. Addition of NO donors, 1 mM S-nitroso-N-acetyl-DL-penicillamine (SNAP) or 1 mM diethylenetriamine-NO adduct (NOC-18), to PC12 cells resulted in a steady-state level of 1-3 microM: NO, rapid and almost complete inhibition of cellular respiration (within 1 min), and a rapid decrease in mitochondrial membrane potential within the cells. A 24-h incubation of PC12 cells with NO donors (SNAP or NOC-18) or specific inhibitors of mitochondrial respiration (myxothiazol, rotenone, or azide), in the absence of glucose, caused total ATP depletion and resulted in 80-100% necrosis. The presence of glucose almost completely prevented the decrease in ATP level and the increase in necrosis induced by the NO donors or mitochondrial inhibitors, suggesting that the NO-induced necrosis in the absence of glucose was due to the inhibition of mitochondrial respiration and subsequent ATP depletion. However, in the presence of glucose, NO donors and mitochondrial inhibitors induced apoptosis of PC12 cells as determined by nuclear morphology. The presence of apoptotic cells was prevented completely by benzyloxycarbonyl-Val-Ala-fluoromethyl ketone (a nonspecific caspase inhibitor), indicating that apoptosis was mediated by caspase activation. Indeed, both NO donors and mitochondrial inhibitors in PC12 cells caused the activation of caspase-3- and caspase-3-processing-like proteases. Caspase-1 activity was not activated. Cyclosporin A (an inhibitor of the mitochondrial permeability transition pore) decreased the activity of caspase-3- and caspase-3-processing-like proteases after treatment with NO donors, but was not effective in the case of the mitochondrial inhibitors. The activation of caspases was accompanied by the release of cytochrome c from mitochondria into the cytosol, which was partially prevented by cyclosporin A in the case of NO donors. These results indicate that NO donors (SNAP or NOC-18) may trigger apoptosis in PC12 cells partially mediated by opening the mitochondrial permeability transition pores, release of cytochrome c, and subsequent caspase activation. NO-induced apoptosis is blocked completely in the absence of glucose, probably due to the lack of ATP. Our findings suggest that mitochondria may be involved in both types of cell death induced by NO donors: necrosis by respiratory inhibition and apoptosis by opening the permeability transition pore. Further, our results indicate that the mode of cell death (necrosis versus apoptosis) induced by either NO or mitochondrial inhibitors depends critically on the glycolytic capacity of the cell.  相似文献   

4.
5.
Plasma membrane potential in thymocyte apoptosis.   总被引:8,自引:0,他引:8  
Apoptosis is accompanied by major changes in ion compartmentalization and transmembrane potentials. Thymocyte apoptosis is characterized by an early dissipation of the mitochondrial transmembrane potential, with transient mitochondrial swelling and a subsequent loss of plasma membrane potential (DeltaP sip) related to the loss of cytosolic K+, cellular shrinkage, and DNA fragmentation. Thus, a gross perturbation of DeltaPsip occurs at the postmitochondrial stage of apoptosis. Unexpectedly, we found that blockade of plasma membrane K+ channels by tetrapentylammonium (TPA), which leads to a DeltaP sip collapse, can prevent the thymocyte apoptosis induced by exposure to the glucocorticoid receptor agonist dexamethasone, the topoisomerase inhibitor etoposide, gamma-irradiation, or ceramide. The TPA-mediated protective effect extends to all features of apoptosis, including dissipation of the mitochondrial transmembrane potential, loss of cytosolic K+, phosphatidylserine exposure on the cell surface, chromatin condensation, as well as caspase and endonuclease activation. In strict contrast, TPA is an ineffective inhibitor when cell death is induced by the potassium ionophore valinomycin, the specific mitochondrial benzodiazepine ligand PK11195, or by primary caspase activation by Fas/CD95 cross-linking. These results underline the importance of K+ channels for the regulation of some but not all pathways leading to thymocyte apoptosis.  相似文献   

6.
The sphingomyelin metabolites ceramide and sphingosine are mediators of cell death induced by gamma-irradiation. We studied the production of ceramide and the effects of exogenous ceramide on apoptosis in LNCaP prostate cancer cells that are highly resistant to gamma-irradiation-induced cell death. LNCaP cells can be sensitized to gamma-irradiation by tumor necrosis factor alpha (TNF-alpha) and, to a lesser degree, by the agonistic FAS antibody CH-11. TNF-alpha activated intrinsic and extrinsic apoptosis pathways and increased ceramide and sphingosine levels in irradiated LNCaP cells. CH-11 activated only the extrinsic apoptosis pathways and had a negligible effect on ceramide and sphingosine levels in irradiated LNCaP cells. Exogenous ceramide and bacterial sphingomyelinase sensitized LNCaP cells to radiation-induced apoptosis and had a synergistic effect on cell death after irradiation with TNF-alpha, but not with CH-11. Cell death effects after exposure to ceramide and irradiation were blocked by the serine protease inhibitor TLCK (Na-p-tosyl-L-lysine-chloromethylketone), but not by the caspase inhibitor z-VAD (2-val-Ala-Asp(oMe)-CH(2)F). During LNCaP cell apoptosis induced by exogenous ceramide, we observed activation of caspase-9, but not caspases-8, -3, or -7. The effect of ceramide occurred largely via the intrinsic mitochondrial apoptosis pathway and enhanced TNF-alpha, but not CH-11 effects on irradiated cells. The data show that ceramide enhanced activation of the intrinsic apoptotic pathway and enhanced cell death induced by TNF-alpha with or without gamma-irradiation. TNF-alpha and gamma-irradiation elevated levels of endogenous ceramide and activated the intrinsic cell death pathway.  相似文献   

7.
Caspase enzymes are a family of cysteine proteases that play a central role in apoptosis. Recently, it has been demonstrated that caspases can be S-nitrosylated and inhibited by nitric oxide (NO). The present report shows that in chick embryo heart cells (CEHC), NO donor molecules such as S-nitroso-N-acetylpenicillamine (SNAP), S-nitrosoglutathione, spermine-NO or sodium nitroprusside inhibit caspase activity in both basal and staurosporine-treated cells. However, the inhibitory effect of NO donors on caspase activity is accompanied by a parallel cytotoxic effect, that precludes NO to exert its antiapoptotic capability. N-Acetylcysteine (NAC) at a concentration of 10 mM blocks depletion of cellular glutathione and cell death in SNAP-treated CEHC, but it poorly affects the ability of SNAP to inhibit caspase activity. Consequently, in the presence of NAC, SNAP attenuates not only caspase activity but also cell death of staurosporine-treated CEHC. These data show that changes in the redox environment may inhibit NO-mediated toxicity, without affecting the antiapoptotic capability of NO, mediated by inhibition of caspase enzymes. NO may thus be transformed from a killer molecule into an antiapoptotic agent.  相似文献   

8.
Accidental cell death often leads to compensatory proliferation. In Drosophila imaginal discs, for example, gamma-irradiation induces extensive cell death, which is rapidly compensated by elevated proliferation. Excessive compensatory proliferation can be artificially induced by "undead cells" that are kept alive by inhibition of effector caspases in the presence of apoptotic stimuli. This suggests that compensatory proliferation is induced by dying cells as part of the apoptosis program. Here, we provide genetic evidence that the Drosophila initiator caspase DRONC governs both apoptosis execution and subsequent compensatory proliferation. We examined mutants of five Drosophila caspases and identified the initiator caspase DRONC and the effector caspase DRICE as crucial executioners of apoptosis. Artificial compensatory proliferation induced by coexpression of Reaper and p35 was completely suppressed in dronc mutants. Moreover, compensatory proliferation after gamma-irradiation was enhanced in drice mutants, in which DRONC is activated but the cells remain alive. These results show that the apoptotic pathway bifurcates at DRONC and that DRONC coordinates the execution of cell death and compensatory proliferation.  相似文献   

9.
Apoptosis is a major mechanism of treatment-induced T-cell depletion in leukemia and autoimmune diseases. While 'classical' apoptosis is considered to depend on caspase activation, caspase-independent death is increasingly recognized as an alternative pathway. Although the DNA-damaging drug cyclophosphamide (CY) is widely used for therapy of hematological malignancies and autoimmune disorders, the molecular mechanism of apoptosis induction remains largely unknown. Here, we report that treatment of Jurkat, cytotoxic, and primary leukemic T cells with an activated analog of CY, 4-hydroperoxy-cyclophosphamide (4-OOH-CY), induces caspase activation and typical features of apoptosis, although cell death was not prevented by caspase inhibition. Also depletion of murine thymocytes and splenocytes after CY treatment in vivo was not inhibited by Z-Val-Ala-DL-Asp-fluoromethylketone (Z-VAD.fmk). Caspase-8 and receptor-induced protein (RIP) were dispensable for 4-OOH-CY-mediated apoptosis, while overexpression of Bcl-2 was partially protective. 4-OOH-CY treatment induced reactive oxygen species production, upregulation of Bax, and nuclear relocation of the mitochondrial factors apoptosis-inducing factor (AIF) and endonuclease G (EndoG). The antioxidant N-acetyl-L-cysteine substantially inhibited conformational changes of Bax, loss of mitochondrial membrane potential, nuclear relocation of mitochondrial factors, and apoptosis induction in 4-OOH-CY-treated T cells. These results strongly indicate that oxidative damage-induced nuclear translocation of AIF and EndoG in 4-OOH-CY-treated T cells might represent an alternative death pathway in the absence of caspase activity.  相似文献   

10.
We previously reported that nitric oxide (NO) released from S-nitrosoglutathione induces conformational change of the p53 tumor-suppressor protein that impairs its DNA-binding activity in vitro. We now demonstrate that MCF-7 cells preincubated in the presence of 0.5-1 mM S-nitrosoglutathione for 4 h before gamma-irradiation failed to arrest in the G1 phase of the cell cycle, whereas those gamma-irradiated without S-nitrosoglutathione exhibited a normal cell cycle arrest. The S-nitrosoglutathione-treated cells did not express the p53 target gene p21(waf-1) after gamma-irradiation, although p21(waf-1) was strongly expressed in cells irradiated in the absence of S-nitrosoglutathione. These results strongly suggest that NO impairs the function of p53 possibly via conformational change and/or amino acid modifications. On the other hand, cells incubated for 16 h in the presence of 1 mM S-nitrosoglutathione underwent apoptosis with accumulation of the pro-apoptotic protein Bax. This Bax accumulation, however, was shown to occur via a p53-independent pathway.  相似文献   

11.
Hyperhomocysteinemia is believed to induce endothelial dysfunction and promote atherosclerosis; however, the pathogenic mechanism has not been clearly elucidated. In this study, we examined the molecular mechanism by which homocysteine (HCy) causes endothelial cell apoptosis and by which nitric oxide (NO) affects HCy-induced apoptosis. Our data demonstrated that HCy caused caspase-dependent apoptosis in cultured human umbilical vein endothelial cells, as determined by cell viability, nuclear condensation, and caspase-3 activation and activity. These apoptotic characteristics were correlated with reactive oxygen species (ROS) production, lipid peroxidation, p53 and Noxa expression, and mitochondrial cytochrome c release following HCy treatment. HCy also induced p53 and Noxa expression and apoptosis in endothelial cells from wild type mice but not in the p53-deficient cells. The NO donor S-nitroso-N-acetylpenicillamine, adenoviral transfer of inducible NO synthase gene, and antioxidants (alpha-tocopherol and superoxide dismutase plus catalase) but not oxidized SNAP, 8-Br-cGMP, nitrite, and nitrate, suppressed ROS production, p53-dependent Noxa expression, and apoptosis induced by HCy. The cytotoxic effect of HCy was decreased by small interfering RNA-mediated suppression of Noxa expression, indicating that Noxa up-regulation plays an important role in HCy-induced endothelial cell apoptosis. Overexpression of inducible NO synthase increased the formation of S-nitroso-HCy, which was inhibited by the NO synthase inhibitor N-monomethyl-l-arginine. Moreover, S-nitroso-HCy did not increase ROS generation, p53-dependent Noxa expression, and apoptosis. These results suggest that up-regulation of p53-dependent Noxa expression may play an important role in the pathogenesis of atherosclerosis induced by HCy and that an increase in vascular NO production may prevent HCy-induced endothelial dysfunction by S-nitrosylation.  相似文献   

12.
We have investigated the mechanism by which nitric oxide (NO) induces the death of mouse astrocytes. We show that NO (from donor diethylenetriamine-NO adduct) induces death with several features of apoptosis, including chromatin condensation, phosphatidylserine exposure on the outer leaflet of the plasma membrane, Bax translocation to the mitochondria and cytochrome c release, but no caspase activation or nuclear fragmentation is observed. Nitric oxide also elevates p53 expression, causing a concomitant increase in p53 serine 18 phosphorylation and p53 translocation from the cytoplasm to the nucleus. Activation of Bax and p53 is important for NO-induced apoptosis-like cell death because Bax- or p53-deficient astrocytes are much more resistant than wild-type cells to the same NO treatment. We further demonstrate that LY294002-sensitive kinases are responsible for controlling serine 18 phosphorylation of p53, thereby regulating the pro-apoptotic activity of p53 in astrocytes. While apoptosis is suppressed in the presence of LY294002, however, death by necrosis is increased, suggesting that LY294002-sensitive kinases additionally suppress a latent necrotic response to NO. We conclude that NO-induced death in astrocytes is mediated by p53- and Bax-dependent mechanisms, although full manifestation of apoptosis is aborted by concomitant inhibition of caspase activation. More generally, our data suggest that apoptotic mediators should be evaluated as the cause of cell death even in cases where a full apoptotic phenotype is lacking.  相似文献   

13.
Suppression of apoptosis in the protein kinase Cdelta null mouse in vivo   总被引:2,自引:0,他引:2  
Protein kinase C (PKC) delta is an essential regulator of mitochondrial dependent apoptosis in epithelial cells. We have used the PKCdelta(-/-) mouse to ask if loss of PKCdelta protects salivary glands against gamma-irradiation-induced apoptosis in vivo and to explore the mechanism underlying protection from apoptosis. We show that gamma-irradiation in vivo results in a robust induction of apoptosis in the parotid glands of wild type mice, whereas apoptosis is suppressed by greater than 60% in the parotid glands of PKCdelta(-/-) mice. Primary parotid cells from PKCdelta(-/-) mice are defective in mitochondrial dependent apoptosis as indicated by suppression of etoposide-induced cytochrome c release, poly(ADP-ribose) polymerase cleavage, and caspase-3 activation. Notably, apoptotic responsiveness can be restored by re-introduction of PKCdelta by adenoviral transduction. Etoposide and gamma-irradiation-induced activation of p53 is similar in primary parotid cells and parotid glands from PKCdelta(+/+) and PKCdelta(-/-) mice, indicating that PKCdelta functions downstream of the DNA damage response. In contrast, activation of the c-Jun amino-terminal kinase is reduced in primary parotid cells from PKCdelta(-/-) cells and in parotid C5 cells, which express a dominant inhibitory mutant of PKCdelta. Similarly, c-Jun amino-terminal kinase activation is suppressed in vivo in gamma-irradiated parotid glands from PKCdelta(-/-) mice. These studies indicate an essential role for PKCdelta downstream of the p53 response and upstream of the c-Jun amino-terminal kinase activation in DNA damage-induced apoptosis in vivo and in vitro.  相似文献   

14.
Previous studies have demonstrated that curcumin induces mitochondria-mediated apoptosis. However, understanding of the molecular mechanisms underlying curcumin-induced cell death remains limited. In this study, we demonstrate that curcumin treatment of cancer cells caused dose- and time-dependent caspase-3 activation, which is required for apoptosis as confirmed using the pan caspase inhibitor, z-VAD. Knockdown experiments and knockout cells excluded a role of caspase-8 in curcumin-induced caspase-3 activation. In contrast, Apaf-1 deficiency or silencing inhibited the activity of caspase-3, pointing to a requisite role of Apaf-1 in curcumin-induced apoptotic cell death. Curcumin treatment led to Apaf-1 upregulation both at the protein and mRNA levels. Cytochrome c release from mitochondria to the cytosol in curcumin-treated cells was associated with upregulation of proapoptotic proteins such as Bax, Bak, Bid, and Bim. Crosslinking experiments demonstrated Bax oligomerization during curcumin-induced apoptosis, suggesting that induced expression of Bax, Bid, and Bim causes Bax-channel formation on the mitochondrial membrane. The release of cytochrome c was unaltered in p53-deficient cells, whereas absence of p21 blocked cytochrome c release, caspase activation, and apoptosis. Importantly, p21-deficiency resulted in reduced expression of Apaf-1 during curcumin treatment, indicating a requirement of p21 in Apaf-1 dependent caspase activation and apoptosis. Together, our findings demonstrate that Apaf-1, Bax, and p21 as novel potential targets for curcumin or curcumin-based anticancer agents.  相似文献   

15.
Background information. Caspase‐dependent and ‐independent death mechanisms are involved in apoptosis in a variety of human carcinoma cells treated with antineoplastic compounds. Our laboratory has reported that p53 is a key contributor of mitochondrial apoptosis in cervical carcinoma cells after staurosporine exposure. However, higher mitochondrial membrane potential dissipation and greater DNA fragmentation were observed in p53wt (wild‐type p53) HeLa cells compared with p53mt (mutated p53) C‐33A cells. Here, we have studied events linked to the mitochondrial apoptotic pathway. Results. Staurosporine can induce death of HeLa cells via a cytochrome c/caspase‐9/caspase‐3 mitochondrial‐dependent apoptotic pathway and via a delayed caspase‐independent pathway. In contrast with p53wt cells, p53mt C‐33A cells exhibit firstly caspase‐8 activation leading to caspase‐3 activation and Bid cleavage followed by cytochrome c release. Attenuation of PARP‐1 [poly(ADP‐ribose) polymerase‐1] cleavage as well as oligonucleosomal DNA fragmentation in the presence of z‐VAD‐fmk points toward a major involvement of a caspase‐dependent pathway in staurosporine‐induced apoptosis in p53wt HeLa cells, which is not the case in p53mt C‐33A cells. Meanwhile, the use of 3‐aminobenzamide, a PARP‐1 inhibitor known to prevent AIF (apoptosis‐inducing factor) release, significantly decreases staurosporine‐induced death in these p53mt carcinoma cells, suggesting a preferential implication of caspase‐independent apoptosis. On the other hand, we show that p53, whose activity is modulated by pifithrin‐α, isolated as a suppressor of p53‐mediated transactivation, or by PRIMA‐1 (p53 reactivation and induction of massive apoptosis), that reactivates mutant p53, causes cytochrome c release as well as mitochondrio—nuclear AIF translocation in staurosporine‐induced apoptosis of cervical carcinoma cells. Conclusions. The present paper highlights that staurosporine engages the intrinsic mitochondrial apoptotic pathway via caspase‐8 or caspase‐9 signalling cascades and via caspase‐independent cell death, as well as through p53 activity.  相似文献   

16.
The tumor suppressor gene p53 regulates apoptotic cell death and the cell cycle. In this study, we investigated the role of p53 in nitric oxide (NO)-induced apoptosis in vascular smooth muscle cells (VSMCs). We found that the NO donor S-nitroso-N-acetylpenicillamine (SNAP) increased apoptotic cell death in p53-deficient VSMCs compared with wild-type cells. The heme oxygenase (HO) inhibitor tin protoporphyrin IX reduced the resistance of wild-type VSMCs to SNAP-induced cell death. SNAP promoted HO-1 expression in both cell types. HO-2 protein was increased only in wild-type VSMCs following SNAP treatment; however, similar levels of HO-2 mRNA were detected in both cell types. SNAP significantly increased the levels of non-heme-iron and dinitrosyl iron-sulfur clusters in wild-type VSMCs compared with p53-deficient VSMCs. Moreover, pretreatment with FeSO4 and the carbon monoxide donor CORM-2, but not biliverdin, significantly protected p53-deficient cells from SNAP-induced cell death compared with normal cells. These results suggest that wild-type VSMCs are more resistant to NO-mediated apoptosis than p53-deficient VSMCs through p53-dependent up-regulation of HO-2.  相似文献   

17.
Nitric oxide (NO) is a chemical messenger implicated in neuronal damage associated with ischemia neurodegenerative disease and excitotoxicity. In the present study, we examined the biological effects of NO and its mechanisms in human malignant glioblastoma cells. Addition of a NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), induced apoptosis in U87MG human glioblastoma cells, accompanied by opening mitochondrial permeability transition pores, release of cytochrome c and AIF, and subsequently by caspase activation. NO-induced apoptosis occurred concurrently with significantly increased levels of the Bak and Bim. Treatment with SNAP resulted in sustained activation of JNK and its downstream pathway, c-Jun/AP-1. The expression of dominant-negative (DN)-JNK1 and DN-c-Jun suppressed the activation of AP-1, the induction of Bak and Bim, and the SNAP-induced apoptosis. In addition, de novo protein synthesis was required for the initiation of apoptosis in that the protein synthesis inhibitor, cycloheximide (CHX), inhibited NO-induced apoptotic cell death as well as up-regulation of Bak and Bim. These results suggest that NO activates an apoptotic cascade, involving sustained JNK activation, AP-1 DNA binding activity, and subsequent Bak and Bim induction, followed by cytochrome c and AIF releases and caspases cascade activation, resulting in human malignant brain tumor cell death.  相似文献   

18.
We previously showed that NO induces apoptosis in thymocytes via a p53-dependent pathway. In the present study, we investigated the role of caspases in this process. The pan-caspase inhibitor, ZVAD-fmk, and the caspase-1 inhibitor, Ac-YVAD-cho, both inhibited NO-induced thymocyte apoptosis in a dose-dependent manner, whereas the caspase-3 inhibitor, Ac-DEVD-cho, had little effect even at concentrations up to 500 microM. ZVAD-fmk and Ac-YVAD-cho were able to inhibit apoptosis when added up to 12 h, but not 16 h, after treatment with the NO donor S-nitroso-N-acetyl penicillamine (SNAP). Caspase-1 activity was up-regulated at 4 h and 8 h and returned to baseline by 24 h; caspase-3 activity was not detected. Cytosolic fractions from SNAP-treated thymocytes cleaved the inhibitor of caspase-activated deoxyribonuclease. Such cleavage was completely blocked by Ac-YVAD-cho, but not by Ac-DEVD-cho or DEVD-fmk. Poly(ADP-ribose) polymerase (PARP) was also cleaved in thymocytes 8 h and 12 h after SNAP treatment; addition of Ac-YVAD-cho to the cultures blocked PARP cleavage. Furthermore, SNAP induced apoptosis in 44% of thymocytes from wild-type mice; thymocytes from caspase-1 knockout mice were more resistant to NO-induced apoptosis. These data suggest that NO induces apoptosis in thymocytes via a caspase-1-dependent but not caspase-3-dependent pathway. Caspase-1 alone can cleave inhibitor of caspase-activated deoxyribonuclease and lead to DNA fragmentation, thus providing a novel pathway for NO-induced thymocyte apoptosis.  相似文献   

19.
Previous studies have demonstrated that curcumin induces mitochondria-mediated apoptosis. However, understanding of the molecular mechanisms underlying curcumin-induced cell death remains limited. In this study, we demonstrate that curcumin treatment of cancer cells caused dose- and time-dependent caspase 3 activation, which is required for apoptosis as confirmed using the pan-caspase inhibitor, z-VAD. Knockdown experiments and knockout cells excluded a role for caspase 8 in curcumin-induced caspase 3 activation. In contrast, Apaf-1 deficiency or silencing inhibited the activity of caspase 3, pointing to a requisite role of Apaf-1 in curcumin-induced apoptotic cell death. Curcumin treatment led to Apaf-1 upregulation, both at the protein and mRNA levels. Cytochrome c release from mitochondria to the cytosol in curcumin-treated cells was associated with upregulation of pro-apoptotic proteins, such as Bax, Bak, Bid and Bim. Cross-linking experiments demonstrated Bax oligomerization during curcumin-induced apoptosis, suggesting that induced expression of Bax, Bid and Bim causes Bax channel formation on the mitochondrial membrane. The release of cytochrome c was unaltered in p53-deficient cells, whereas absence of p21 blocked cytochrome c release, caspase activation and apoptosis. Importantly, p21 deficiency resulted in reduced expression of Apaf-1 during curcumin treatment, indicating a requirement for p21 in Apaf-1-dependent caspase activation and apoptosis. Together, our findings identify Apaf-1, Bax and p21 as novel potential targets for curcumin or curcumin-based anticancer agents.Key words: curcumin, mitochondria, cytochrome c, Apaf-1, caspase, p21  相似文献   

20.
Surfactin has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in surfactin-induced apoptosis remain poorly understood. The present study was undertaken to elucidate the underlying network of signaling events in surfactin-induced apoptosis of human breast cancer MCF-7 cells. In this study, surfactin caused reactive oxygen species (ROS) generation and the surfactin-induced cell death was prevented by antioxidants N-acetylcysteine (NAC) and catalase, suggesting involvement of ROS generation in surfactin-induced cell death. Surfactin induced a sustained activation of the phosphorylation of ERK1/2 and JNK, but not p38. Moreover, surfactin-induced cell death was reversed by PD98059 (an inhibitor of ERK1/2) and SP600125 (an inhibitor of JNK), but not by SB203580 (an inhibitor of p38). However, the phosphorylation of JNK rather than ERK1/2 activation by surfactin was blocked by NAC/catalase. These results suggest that the action of surfactin on MCF-7 cells was via ERK1/2 and JNK, but not via p38, and the ERK1/2 and JNK activation induce apoptosis through two independent signaling mechanisms. Surfactin triggered the mitochondrial/caspase apoptotic pathway indicated by enhanced Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase cascade reaction. The NAC and SP600125 blocked these events induced by surfactin. Moreover, the general caspase inhibitor z-VAD-FMK inhibited the caspase-6 activity and exerted the protective effect against the surfactin-induced cell death. Taken together, these findings suggest that the surfactin induces apoptosis through a ROS/JNK-mediated mitochondrial/caspase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号