首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endogenous levels of cambial region abscisic acid (ABA) were quantified by immunoassay and assessed together with cambial growth activity in poplar (Populus nigra L. × P. maximowiczii Henry, clone Kamabuchi) over the course of a growing season. The level of cambial region ABA increased from spring to late-summer but decreased sharply in autumn. Cambial growth activity, measured as the radial number of undifferentiated cambial cells and enlarging xylem cells, also increased from spring to summer and decreased sharply in autumn, indicating the onset of cambial dormancy. Exogenous ABA, applied laterally to poplar stems at two times within the growing season, enhanced cambial growth activity, as the radial number of undifferentiated cambial cells increased in ABA-treated trees subsequent to the two application times. Xylem cell development was also affected by exogenous ABA as fibre length increased significantly in ABA-treated trees at both application times. The positive correlation of cambial region ABA and cambial growth activity as well as the positive effects of exogenous ABA application thereon sheds new light on the role of this hormonal growth regulator.  相似文献   

2.
The regulation of cell-division activity in the vascular cambium and of secondary xylem and phloem development is reviewed for temperate-zone tree species in relation to auxins, gibberellins, abscisic acid, cytokinins, and ethylene. Representatives of the first four of these PGR classes (IAA, GA1, GA4, GA7, GA9, GA20, ABA, Z, ZR, DCA) have been identified conclusively by mass spectrometry in the cambial region in some Pinaceae, but not in any hardwood species. Endogenous ethylene has yet to be definitively characterized in this region in any species. Evidence concerning the source and metabolism of cambial PGRs is scanty and inconclusive for both conifers and hardwoods.Most cambial PGR research has focused on IAA. Much evidence indicates that this PGR is transported primarily in the cambial region at a rate of about 1 cm h–1, and that the transport is basipetally polar. GC-MS measurements have established that endogenous IAA levels in the cambial region of Pinaceae are highest during earlywood development, and that cambial IAA levels may be considerably lower in hardwoods than in conifers. IAA appears to be involved in the control of cambial growth in conifers and hardwoods in at least three specific ways, viz. maintenance of the elongated form of fusiform cambial cells, promotion of radial expansion in primary walls of cambial derivatives, and regulation of reaction wood formation. In addition, it is well established that exogenous IAA promotes vessel development in hardwoods. In both conifers and hardwoods, exogenous IAA stimulates cambial growth in 1-year-old shoots treated late in the dormant period or after the start of the cambial growing period. However, exogenous IAA has little effect on cambia that are older or are in what is hypothesized to be the resting stage of dormancy. Thus it is uncertain whether IAA is directly involved in the control of cambial growth, or acts indirectly through a process such as hormone-directed transport.It is not yet clear if gibberellins play a role in the control of cambial growth in conifers. However, in hardwoods, there is evidence that they inhibit vessel development and act synergistically with IAA in promoting cambial activity and fiber elongation. In both conifers and hardwoods, foliar sprays of gibberellins increase the accumulation of biomass above-ground, particularly in the main axis, while decreasing it in the roots.There are as yet no definite conclusions to be drawn concerning the involvement of ABA, cytokinins, and ethylene in the regulation of cambial growth in conifers or hardwoods. In conifers, ABA may antagonize the promotory effect of IAA on cambial cell division and tracheid radial expansion under conditions of water stress, but high endogenous ABA levels do not appear to be associated with the formation of latewood or the onset of cambial dormancy. Some evidence suggests that exogenous cytokinins enhance the promotory effect of IAA on cambial growth, particularly ray formation, in both hardwoods and conifers. However, exogenous cytokinins, by themselves, appear to be ineffective. In hardwoods, ethylene-generating compounds satisfy the chilling requirement of the dormant cambium and promote the formation of wood having an apparently greater content of lignin and extractives. Ethylene-generators also affect wood development in conifers and accelerate cambial growth at the application site in both hardwoods and conifers.  相似文献   

3.
Abstract. Gas chromatography – selected ion monitoring – mass spectrometry was used to measure the level of indole-3-acetic acid (IAA) in the cambial region at the top and bottom of the branchless portion of the main stem of three large Scots pine trees, at weekly intervals from 28 April to 13 July. During this period, the cambium reactivated from the dormant state and entered its 'grand' period of xylem and phloem production, which was monitored by microscopy. The total amount of IAA (ng cm−2) increased steadily from 28 April until late June, and thereafter remained constant. In contrast, the concentration of IAA (ng g−1 fresh weight) was high at the start of cambial reactivation, declined when the number of differentiating tracheids began to increase, and then rose as the number of cells decreased. The timing and magnitude of the changes in xylem and phloem production and in IAA level were similar at the two sampling positions. It is concluded that the seasonal changes in cambial activity in the conifer stem cannot be ascribed simply to a fluctuation in the level of endogenous IAA in the cambial region.  相似文献   

4.
The cambial tissues of a Populus balsamifera, Balsam poplar clone were studied during a growth season. The Klason and acid-soluble lignin contents were determined as well as the carbohydrate monomer distribution and the protein content. Both the phloem and the xylem sides of the cambial region were examined. The samples were analyzed by thioacidolysis and structures of dimeric products were determined by mass spectrometry after desulphuration. Chemical analysis of samples during the growth season was combined with microscopy of embedded specimens that showed the state of cell differentiation at the time of sampling. In spring and early summer, growth is very rapid and the intention was to collect tissue in which exclusively the middle lamella/primary cell wall had begun to lignify. The Klason lignin, protein content and carbohydrate monomer distribution showed that all the specimens from the cambial tissues sampled during a growth season contained predominantly middle lamella and primary walls; except for the developing xylem sampled in August where the carbohydrate composition showed that secondary walls were present. Thioacidolysis showed that the lignin from the cambial tissues had more condensed structures than the lignin from the reference balsam poplar clone wood. More guaiacyl than syringyl units were detected and mass spectrometry showed that the cambial tissues contained more lignin structures with end-groups than the reference sample. These results suggest that lignification in the cambial layer and early developing xylem may take place predominantly in a bulk fashion during the summer.  相似文献   

5.
To study the involvement of potassium in wood formation, poplar plants ( Populus tremula L. x Populus tremuloides Michx.) were grown over a period of one growing season, under different potassium regimes. Seasonal changes in cambial potassium content, osmotic potential, and cambial activity correlated strongly throughout the season, increasing from spring to summer and decreasing from summer to autumn. Moreover, changing the potassium supply during the growing season affected the seasonal changes of these parameters in a similar way. Low potassium supply markedly reduced cambial activity, the number of expanding cambial cell derivatives, the seasonal rate of radial wood increment, and the vessel frequency. The possible effect of hormones on potassium-dependent cambial growth was investigated and revealed that abscisic acid (ABA) strongly decreased the potassium content within the cambial zone and reduced cambial activity, as well as the number of expanding cambial cell derivatives. In summary, our results indicate a key role for potassium in the regulation of cambial growth and wood formation due to its strong impact on osmoregulation in expanding cambial cells. They also demonstrate involvement of ABA in regulation of potassium-dependent cambial growth.  相似文献   

6.
Tissue was collected from the vascular cambial region of 1-year-old balsam fir shoots over an 11-week period during which cambial reactivation occurred. The amount of rDNA (ribosomal RNA genes) relative to total genomic DNA was determined by quantitative slot blots for three trees, one of which showed a 3-week delay in reactivation. In addition, nucleolar activity was estimated by measuring nucleolar volume, number, and staining intensity. Relative rRNA gene content increased transiently prior to the onset of cambial cell periclinal division. Nucleolar volume also increased transiently, but 1–2 weeks prior to the maximal relative rDNA value. The increases in relative rDNA and nucleolar activity were delayed in the tree in which reactivation was late. We interpret these changes as reflecting the amplification and loss of genes encoding rRNA to facilitate cambial cell reactivation.  相似文献   

7.
Changes in protein synthesis in cambial region cells were monitored in 1-year-old cuttings of Scots pine ( Pinus sylvestris L.) collected in November, when the cambium was dormant, and subjected to environmental conditions that promoted or inhibited cambial growth. The proteins were labelled in vivo with L-[35S]-methionine and separated using 2-dimensional polyacrylamide gel electrophoresis. In budded cuttings cultured under environmental conditions favoring cambial reactivation, there was a reproducible quantitative change in 55 proteins (33 induced and 22 repressed), a less certain increase or decrease in 40 proteins, and no apparent change in about 150 proteins. Under the same conditions, 8 proteins were induced and 6 others were repressed in debudded cuttings treated apically with 1 mg indole-3-acetic acid (IAA) in 1 g lanolin, in which cambial reactivation occurred, compared with debudded cuttings treated with plain lanolin in which the cambium did not reactivate. Three of the proteins induced in the IAA-reated cuttings only appeared after cambial cell division and derivative differentiation actually began, and the same proteins were found in budded cuttings after their cambium had become reactivated. In contrast, protein expression in cuttings exposed to environmental conditions that prevented cambial reactivation was similar at the beginning and end of the experimental period. These results indicate that the cambium was in the quiescence stage of dormancy at the start of the experiment, that quiescent cambial region cells can synthesize proteins as soon as exposed to environmental conditions favoring reactivation, and that only 3 of the approximately 250 proteins detected were specifically involved in cambial growth  相似文献   

8.
Cambial activity and vessel differentiation of the Quercus robur stem were investigated in relation to concentration of growth regulators and sucrose, seasonal changes in the sensitivity of cambial cells, and axial polarity of the stem. Basipetal efflux of natural auxin was measured in the oak stem cambial region. IAA, GA3, kinetin and sucrose affected cambial activity and/or initiation of vessel differentiation differently, depending upon concentration. Depending upon the season, kinetin increased or reduced the stimulation of cambial activity caused by IAA and GA3, but it did not affect the differentiation of vessels. Supply of sucrose in higher concentrations reduced the number of differentiated vessels but did not decrease the stimulation of cambial divisions.Unlike stimulation of cambial activity by GA3, auxin stimulation of cambial divisions and differentiation of vessels were highly dependent upon stem polarity, 2,3,5-triiodobenzoic acid (TIBA) inhibited formation of vessels, but not cambial activity. The oscillations in basipetal efflux of natural auxin from the cambial stem region of successive 6 mm long sections substantiate the hypothesis that the histogenesis of xylem tissue in ring-porous species is under control of the vectoriat field that is associated with oscillatory phenomena in polar auxin transport.  相似文献   

9.
Summary The current notion that hormonal level and cell response are clearly correlated has often been challenged recently. During the period of cambial activity, auxin content seems to control the intensity of mitosis and some features of the resulting wood, but not the duration of the active period itself. During cambial rest, the indole-3-acetic acid (IAA) level often remains high in the cambium, but the cell sensitivity to auxin is low. The decrease of auxin transport in autumn is sometimes interpreted as a major qualitative change affecting the pattern of transport, and sometimes as a secondary change occurring later than rest onset. The causes of the seasonal variation of cambial response remain unknown. A hypothesis is proposed that accounts for the structural-functional changes occurring in cambial cells during the onset of dormancy. Abscisic acid (ABA) may reduce wood production and xylem cell enlargement in late summer. An important amount of ABA may be present in the cambial zone in autumn after drought stress and in spring in the young growing shoot. Changes in ABA level do not appear to be clearly correlated with the different steps of cambial rest and activity. Beyond the role of ABA as a stress mediator, its participation in the annual regulation of cambial activity remains unclear. Its distribution in the most alkaline compartments may account for the particularities of its seasonal activity. The involvement of IAA and ABA in cambial growth is discussed within the scope of a possible annual alternation of two different metabolisms in the cambial cell.Abbreviations ABA abscisic acid - DPA dihydrophaseic acid - GA gibberellic acid - GC-MS gas chromatography-mass spectrometry - IAA indole-3-acetic acid - PA phaseic acid - RNA ribonucleic acid - SICM single ion current monitoring - SIM selected ion monitoring  相似文献   

10.
S. Pramod  Priti B. Patel  Karumanchi S. Rao 《Flora》2013,208(10-12):549-555
The effect of exogenous ethephon on cambial activity, xylem production and ray population in young shoots of Leucaena leucocephala was investigated anatomically. The application of ethephon showed a diphasic effect on cambial activity and xylogenesis in a dose dependent manner. Lower concentration of ethephon enhanced cambial activity while high concentrations reduced cambial cell divisions and daughter-cell differentiation. High ethephon concentration also resulted in shorter vessel elements, thick walled fibers and phenolic accumulation in ray cells and vessel elements, whereas low concentration allowed elongation of fibers and vessel elements. The density of rays increased significantly with increase in ethylene concentration. The evaluation of longitudinal sections of cambial zone in ethephon treated plants showed high frequency of transformation of fusiform initials into ray initials through divisions and segmentation, resulting in high ray frequency in both xylem and phloem. The present study demonstrates that ethylene plays an important role in regulating secondary vascular tissue composition by reducing the population of fusiform initials in the cambium.  相似文献   

11.
The relationship between from hardiness and growth potential, and their dependence on temperature and photoperiod, was investigated in the one-year-old cambium of balsam fir [Abies balsamea (L.) Mill.]. Six-year-old trees were exposed for 9 weeks to either the natural environment or one of 4 controlled environments in the fall (18 September-18 November), spring (12 April–14 June) and summer (19 July – 19 September). The 4 controlled environments were (1) WS, warm temperature (24/20°C in day/night) + short day (8 h). (2) WL. warm temperature (24/20°C) + long day (8 h + 1 h night break), (3) CS. cold temperature (9/5°C) + short day (8 h) and (4) CL, cold temperature (9/5°C) + long day (8 h + 1 h night break). At the beginning and end of each exposure, cambial activity was measured by recording the number of xylem, cambium and phloem cells, frost hardiness was estimated from the cambium's ability to survive freezing to –40°C, and cambial growth potential was deduced from the duration of the cell cycle and the production of xylem, cambium and phloem cells in cuttings cultured for 4 weeks with exogenous indole-3-acetic acid (IAA) under environmental conditions favourable for cambial activity. In the natural environment, frost hardening began in September and was completed in November, while dehardening occurred when the cambium reactivated. CL, CS, and to a lesser extent WS, promoted hardening in the summer and fall, but did not prevent dehardening in the spring. The cambial growth potential in the natural environment declined from a maximum in April to a low level in June, reached a minimum in September, then increased to a high level in November. This potential was promoted by CL and CS on all dates by WL in the summer and fall. The ratio of xylem to phloem induced by IAA treatment was greatest in June and least in September in cuttings from trees exposed to the natural environment, and was increased by CL and CS in the fall. The cambium in intact branches of trees protected from chilling during the fall and winter resumed cell cycling after less than 9 weeks of dormancy, but produced mostly or only phloem in the subsequent growing period. It is concluded that the frost hardiness of the cambium, the IAA-induced cycling of cambial cells, and IAA-induced xylem to phloem ratio vary independently with season, temperature and photoperiod, and that the periodicity of these processes is regulated endogenously.  相似文献   

12.
I Iliev  R Savidge 《Phytochemistry》1999,50(6):953-960
Proteolytic activity in the cambial zone and developing xylem of Pinus banksiana Lamb. was investigated over an annual cycle of growth and dormancy. Highest proteolytic activity was associated with the most active period of primary-wall radial expansion of cambial derivatives, in early spring, before protoplasmic autolysis was initiated in developing earlywood. Three pH maxima of proteolytic activity, near pH 3.0, 6.5 and 9.5, were observed at that time. In general, activities measured at pH values below 7.0 were greater than those determined above pH 7.0 at all stages in the annual cycle, in both cambial zone and developing xylem, although elevated activity at alkaline pH was also observed during springtime growth. Polyvinylpolypyrollidone (PVP) treatment markedly enhanced pH 7.5 but not pH 4.0 proteolytic activity in the cambial zone, but not in developing xylem, indicating the presence of PVP-binding proteinase regulators in the cambium. By fractionation and effector studies total proteolysis was determined to comprise interactions between serine, cystine, aspartate and metallo-proteases having MWs, by gel chromatography, between 10 and 100 kDa. The observations point to a complex regulatory mechanism controlling the presence and catalytic rates of the distinct types of proteases in the cambial region throughout an annual cycle of growth and dormancy.  相似文献   

13.
Sundberg B  Little CH  Cui K 《Plant physiology》1990,93(4):1295-1302
Free and conjugated indole-3-acetic acid (IAA) were measured by quantitative gas chromatography-selected ion monitoringmass spectrometry in the extraxylary region of the stem of large Pinus sylvestris (L.) trees during the annual cycle of cambial activity and dormancy. The extraxylary region at the stem top and bottom was divided into 3 and 4 fractions, respectively, for the free IAA measurements, while the entire extraxylary region was extracted when the IAA-conjugates were analyzed. The effect on the distribution pattern of expressing IAA level as a concentration (per gram fresh weight or dry weight) and as total amount (per square centimeter) was examined. The IAA level was much higher in the cambial region than in the fractions that contained the nonfunctional phloem and the periderm. The largest IAA concentration occurred in the fraction that included the cambium, whereas the total amount of IAA was greatest in the phloemcontaining fraction. The significance of the nonuniform radial distribution of IAA for estimating the IAA concentration in the cambial region is discussed in relation to how the cambial region is sampled. A slight Iongitudinal gradient in IAA concentration, decreasing from the top to the bottom of the stem, was observed in the cambial region when the cambium was in the grand period of activity, but not at the end of the cambial growing period. In all fractions, the total amount of IAA was highest when the cambium was active. However, the IAA concentration in the cambial region did not follow the same pattern, actually being lowest during the tracheid production period at the stem bottom. IAA conjugates were detected on all sampling dates except June 23, but their concentrations were always less than 14% of that of free IAA, and their occurrence did not obviously vary during the year. In general, there was a higher concentration of ester conjugates than of amide conjugates, and the ester conjugates were more abundant at the top of the stem than at the bottom.  相似文献   

14.
The plasma membrane H(+)-ATPase (PM H(+)-ATPase), potassium ions, and endogenous ion currents might play a fundamental role in the physiology of cambial growth. Seasonal changes of these parameters were studied in twigs of Populus nigra and Populus trichocarpa. Monoclonal and polyclonal antibodies against the PM H(+)-ATPase, x-ray analysis for K(+) localization and a vibrating electrode for measurement of endogenous ion currents were used as probes. In dormant plants during autumn and winter, only a slight immunoreactivity against the PM H(+)-ATPase was found in cross sections and tissue homogenates, K(+) was distributed evenly, and the density of endogenous current was low. In spring during cambial growth, strong immunoreactivity against a PM H(+)-ATPase was observed in cambial cells and expanding xylem cells using the monoclonal antibody 46 E5 B11 F6 for fluorescence microscopy and transmission electron microscopy. At the same time, K(+) accumulated in cells of the cambial region, and strong endogenous current was measured in the cambial and immature xylem zone. Addition of auxin to dormant twigs induced the formation of this PM H(+)-ATPase in the dormant cambial region within a few days and an increase in density of endogenous current in shoot cuttings within a few hours. The increase in PM H(+)-ATPase abundance and in current density by auxin indicates that auxin mediates a rise in number and activity of an H(+)-ATPase in the plasma membrane of cambial cells and their derivatives. This PM H(+)-ATPase generates the necessary H(+)-gradient (proton-motive force) for the uptake of K(+) and nutrients into cambial and expanding xylem cells.  相似文献   

15.

Background and Aims

Cambium reactivation after dormancy and budbreak in deciduous trees requires a supply of mobilized reserve materials. The pathway and mode of transfer of these materials are poorly understood.

Methods

Transport of reserve materials during cambium reactivation in Populus nigra was investigated by conventional and immunocytochemical TEM analyses, SDS–PAGE, western blotting and intracellular microinjection of fluorescent dyes.

Key Results

Proteinaceous compounds stored in vacuoles and protein bodies of vascular cells and ray cells disappeared within 3 weeks after cambial reactivation and budbreak. Some of these proteins (32 kDa, 30 kDa and 15 kDa) were labelled by lectin antibodies in SDS–PAGE. The same antibodies were localized to plasmodesmata (PDs) between phloem parenchyma, ray cells and fusiform cambial cells. In addition, proteinaceous particles were localized inside the cytoplasmic sleeves of these PDs during budbreak. During this period, the functional diameter of PDs was about 2·2 nm which corresponds approximately to the Stokes'' radius of the detected 15-kDa protein.

Conclusions

Lectin-like reserve proteins or their degradation products seem to be transferred through PDs of phloem parenchyma and rays during cambial reactivation and budbreak. PD transfer of storage proteins is a novelty which supports the concept of symplasmic nutrient supply to the cambial region.  相似文献   

16.
Conifer stem pest resistance includes constitutive defenses that discourage invasion and inducible defenses, including phenolic and terpenoid resin synthesis. Recently, methyl jasmonate (MJ) was shown to induce conifer resin and phenolic defenses; however, it is not known if MJ is the direct effector or if there is a downstream signal. Exogenous applications of MJ, methyl salicylate, and ethylene were used to assess inducible defense signaling mechanisms in conifer stems. MJ and ethylene but not methyl salicylate caused enhanced phenolic synthesis in polyphenolic parenchyma cells, early sclereid lignification, and reprogramming of the cambial zone to form traumatic resin ducts in Pseudotsuga menziesii and Sequoiadendron giganteum. Similar responses in internodes above and below treated internodes indicate transport of a signal giving a systemic response. Studies focusing on P. menziesii showed MJ induced ethylene production earlier and 77-fold higher than wounding. Ethylene production was also induced in internodes above the MJ-treated internode. Pretreatment of P. menziesii stems with the ethylene response inhibitor 1-methylcyclopropene inhibited MJ and wound responses. Wounding increased 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase protein, but MJ treatment produced a higher and more rapid ACC oxidase increase. ACC oxidase was most abundant in ray parenchyma cells, followed by cambial zone cells and resin duct epithelia. The data show these MJ-induced defense responses are mediated by ethylene. The cambial zone xylem mother cells are reprogrammed to differentiate into resin-secreting epithelial cells by an MJ-induced ethylene burst, whereas polyphenolic parenchyma cells are activated to increase polyphenol production. The results also indicate a central role of ray parenchyma in ethylene-induced defense.  相似文献   

17.
There is general agreement that in many regions additional precipitation with climate change will not be able to balance the increased evaporation rate induced by higher air temperatures, causing periods of intense drought. Although seedlings of Abies balsamea growing in the boreal forest are known for their resistance to harsh environmental conditions, the impact of water stress on their growth still remains largely unexamined. The aim of this study was to investigate growth responses of this species during and after a dry period by monitoring cambial and apical meristem activity at short time scale. Meristem growth was studied from May to October 2005 on seedlings of A. balsamea submitted to a 20-day-long dry period in June–July. Lower rates of shoot lengthening were observed in non-irrigated seedlings only in the first part of the growing season. Irrigated and non-irrigated trees showed the same trend of xylem formation and timings of cell differentiation. Cell production during cambial activity was estimated at about one xylem cell per day thus achieving in 100 days 108 tracheids in the tree ring and a width of 2 mm, with thinner tree rings observed in non-irrigated plants. A reduction of up to 50% in lumen area and cell diameter was observed for the cells produced during the dry period. Response of A. balsamea seedlings to a 20-day-long dry period consisted of good resistance of the cambial meristems during and after water stress, high sensitivity and rapid recovery of cell sizes during water depletion and slow but effective recovery of shoot growth after treatment.  相似文献   

18.
Elucidation of the role of endogenous cytokinins in cambial activity and wood formation requires knowledge of their identity and concentrations in the cambial region. Here, we have used capillary liquid chromatography/frit-FAB mass spectrometry to identify endogenous cytokinins in the vascular cambial region of mature Pinus sylvestris (L.) trees. Full-scan mass spectra were obtained for isopentenyladenine, isopentenyladenosine, zeatin riboside, dihydrozeatin and dihydrozeatin riboside. Of these, isopentenyladenine, dihydrozeatin and dihydrozeatin riboside are demonstrated by rigorous physico chemical methods for the first time in a conifer. In addition, an adenine glycoside was found for the first time in a plant. The identified cytokinins were quantified in active and dormant cambial region tissues by isotope dilution techniques using the appropriate deuterated isotope for each cytokinin species. The concentration of the detected cytokinins ranged between 1.3 and 5.5 pmol g-1 fresh weight, and did not vary greatly between dormant tissues, and in tissues actively dividing and differentiating. This observation indicates that cessation and reactivation of cell division activity in the vascular cambium is controlled by factors other than cytokinin availability.  相似文献   

19.
Gibberellin A4/7 (GA4/7) was applied in lanolin or ethanol around the circumference at the midpoint of the previous-year terminal of dormant Pinus sylvestris seedlings. After cultivating the seedlings under environmental conditions favorable for growth for up to 10 weeks, cambial growth was measured as the radial widths of xylem and phloem, and the level of indole-3-acetic acid (IAA) was determined by combined gas chromatography-mass spectrometry using [136](IAA) as the internal standard. In intact seedlings, both 1 mg GA4/7 g?1 lanolin and 50 mg GA4/7 I?1 ethanol increased phloem production and the cambial region IAA level in the current-year terminal, without significantly altering its longitudinal growth. In the previous-year terminal, 1 mg GA4/7 g?1 lanolin promoted phloem production at the application point and increased the cambial region IAA level above this point, whereas 50 mg GA4/7 I?1 ethanol stimulated the production of both xylem and phloem at the treatment site and elevated the cambial region IAA level beneath it. Laterally applied GA4/7 at 50 mg I?1 ethanol stimulated xylem and phloem production in debudded previous-year terminals treated at the apical cut surface with 1 mg IAA g?1 lanolin, but not in those treated with plain lanolin. However, the promotion of cambial growth in debudded terminals treated apically with 1 mg IAA g?1 lanolin and laterally with 50 mg GA4/7 I?1 ethanol was not associated with an elevated IAA content in the cambial region. The results indicate that exogenous GA4/7 can promote xylem and phloem production provided an IAA source is present, and that it or a metabolic product acts directly, rather than indirectly by stimulating longitudinal growth and/or raising the cambial region IAA level.  相似文献   

20.
Poplar under drought: comparison of leaf and cambial proteomic responses   总被引:1,自引:0,他引:1  
The forest ecosystem is of particular importance from an economic and ecological perspective. However, the stress physiology of trees, perennial and woody plants, is far from being fully understood. For that purpose, poplar plants were exposed to drought; the plants exhibited commonly reported drought stress traits in the different plant tissues. Leafy rooted cuttings of poplar were investigated through a proteomic approach in order to compare the water constraint response of two plant tissues, namely leaf and cambium. Sampling was realized during the drought period at 2 time points with increased drought intensity and 7 days after rewatering. Our data show that there is a difference in the moment of response to the water constraint between the two tissues, cambium being affected later than leaves. In leaves, drought induced a decrease in rubisco content, and an increase in the abundance of light harvesting complex proteins as well as changes in membrane-related proteins. In the cambial tissue, the salient proteome pattern change was the decrease of multiple proteins identified as bark storage proteins. After rewatering, almost all changes in cambial proteome disappeared whereas a significant number of leaf proteins appeared to be differentially regulated only during the recovery from drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号