首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aging liver loses the ability to proliferate after partial hepatic resections. We have recently found that, in liver, aging switches C/EBPalpha from inhibition of Cdks to repression of E2F, the pathway that normally operates in adipose tissues. This switch causes a loss of proliferative response in old livers because of an inability to induce E2F target genes after partial hepatectomy.  相似文献   

2.
3.
The aging liver looses the ability to proliferate after partial hepatic resections. We have recently found that, in liver, aging switches C/EBPa from inhibition of Cdks to repression of E2F, the pathway that normally operates in adipose tissues. This switch causes a loss of proliferative response in old livers because of an inability to induce E2F target genes after partial hepatectomy.  相似文献   

4.
5.
We previously showed that the rate of hepatocyte proliferation in livers from newborn C/EBPalpha knockout mice was increased. An examination of cell cycle-related proteins showed that the cyclin-dependent kinase (CDK) inhibitor p21 level was reduced in the knockout animals compared to that in wild-type littermates. Here we show additional cell cycle-associated proteins that are affected by C/EBPalpha. We have observed that C/EBPalpha controls the composition of E2F complexes through interaction with the retinoblastoma (Rb)-like protein, p107, during prenatal liver development. S-phase-specific E2F complexes containing E2F, DP, cdk2, cyclin A, and p107 are observed in the developing liver. In wild-type animals these complexes disappear by day 18 of gestation and are no longer present in the newborn animals. In the C/EBPalpha mutant, the S-phase-specific complexes do not diminish and persist to birth. The elevation of levels of the S-phase-specific E2F-p107 complexes in C/EBPalpha knockout mice correlates with the increased expression of several E2F-dependent genes such as those that encode cyclin A, proliferating cell nuclear antigen, and p107. The C/EBPalpha-mediated regulation of E2F binding is specific, since the deletion of another C/EBP family member, C/EBPbeta, does not change the pattern of E2F binding during prenatal liver development. The addition of bacterially expressed, purified His-C/EBPalpha to the E2F binding reaction resulted in the disruption of E2F complexes containing p107 in nuclear extracts from C/EBPalpha knockout mouse livers. Ectopic expression of C/EBPalpha in cultured cells also leads to a reduction of E2F complexes containing Rb family proteins. Coimmunoprecipitation analyses revealed an interaction of C/EBPalpha with p107 but none with cdk2, E2F1, or cyclin A. A region of C/EBPalpha that has sequence similarity to E2F is sufficient for the disruption of the E2F-p107 complexes. Despite its role as a DNA binding protein, C/EBPalpha brings about a change in E2F complex composition through a protein-protein interaction. The disruption of E2F-p107 complexes correlates with C/EBPalpha-mediated growth arrest of hepatocytes in newborn animals.  相似文献   

6.
7.
8.
9.
When hepatocyte proliferation is stimulated in the liver by partial hepatectomy, messenger RNAs coding for fibrinogen, actin, c-myc and topoisomerase I are rapidly accumulated. We distinguish an early phase of accumulation (0-3 h after partial hepatectomy) which is also observed after a sham operation for the four genes, and during inflammation produced by Freund's adjuvant in the case of fibrinogen and c-myc genes. The hepatic response to inflammation appears therefore to mimic events characteristic of the G0/G1 transition, such as the accumulation of the c-myc mRNA. The late phase of mRNA accumulation (beyond 3 h after partial hepatectomy) is typical of liver regeneration. The level of c-myc mRNA is transiently increased (20-fold over normal) 20 h after partial hepatectomy, that is, at the time of DNA synthesis. Topoisomerase-I mRNA level increases between 3 and 24 h after partial hepatectomy (5-10-fold over normal). These results suggest that accumulation of c-myc and topoisomerase-I mRNAs is associated with DNA replication in regenerating liver.  相似文献   

10.
11.
Hepatic expression of the protooncogenes c-fos and c-myc occurs within 2 h after partial hepatectomy, and these immediate early genes are thought to prime the hepatocytes for subsequent proliferation. To examine whether such gene activation occured in the setting of hepatocyte proliferation after toxic liver injury, protooncogene expression was examined during the regenerative response following liver injury from carbon tetrachloride (CCI4) or galactosamine (GaIN). The pattern of protooncogene expression after CCI4 mirrored that seen after partial hepatectomy, with rises in c-fos and c-myc mRNA content within 2 h, and then a rapid return to baseline levels. In contrast, early c-fos and c-myc expression did not occur after GaIN injury. Instead GaIN-induced regeneration led to a delayed and prolonged c-fos an c-myc activation which peaked 24–48 h after injury. Increase in c-jun, jun-B, and jun-D mRNA levels also occured in both models at times similar to the rises of c-fos and c-myc expression. Although the timing of DNA synthesis was identical after GaIN or CCI4 treatment the proliferative response after GaIN injury was significantly less than that of CCI4, and marked by the histologic appearance of oval cells. The coadministration of 2-acetylaminofluorene, an inhibitor of differentiated hepatocyte proliferation, together with CCI4 altered the usual pattern of post-CCI4 protooncogene expression to one resembling that seen after GaIN injury. Thus, the timing of protooncogene expression during liver regeneration may vary considerably. These variations may influence the nature of the proliferative response in terms of which cell types(s) proliferates, and the amount of regeneration that ensures. © 1993 Wiley-Liss, Inc.  相似文献   

12.
13.
Chen CR  Kang Y  Siegel PM  Massagué J 《Cell》2002,110(1):19-32
  相似文献   

14.
HDAC1 (histone deacetylase 1) regulates a number of biological processes in cells. Our previous studies revealed that HDAC1 inhibits proliferation of the livers in old mice. We have surprisingly observed that HDAC1 is also increased in young livers proliferating after partial hepatectomy (PH) and in human liver tumors. Increased levels of HDAC1 after PH lead to its interaction with a member of the C/EBP family, C/EBPbeta, which is also elevated after PH. At early time points after PH, the HDAC1-C/EBPbeta complex binds to the C/EBPalpha promoter and represses expression of C/EBPalpha. A detailed analysis of the role of HDAC1 and C/EBPbeta proteins in the regulation of C/EBPalpha promoter showed that, whereas C/EBPbeta alone activates the promoter, HDAC1 represses the promoter in a C/EBPbeta-dependent manner. The inhibition of HDAC1 in the livers of young mice inhibits liver proliferation after PH, which is associated with high levels of C/EBPalpha. Consistent with the positive role of HDAC1-C/EBPbeta complexes in liver proliferation, we have found that the CUGBP1-HDAC1-C/EBPbeta pathway is activated in human tumor liver samples, suggesting that HDAC1-C/EBPbeta complexes are involved in the development of liver tumors. The causal role of the CUGBP1-HDAC1 pathway in liver proliferation was examined in CUGBP1 transgenic mice, which display high levels of the CUGBP1-eIF2 complex. We have demonstrated that elevation of the HDAC1-C/EBPbeta complexes in CUGBP1 transgenic mice reduces expression of C/EBPalpha and increases the rate of liver proliferation. Thus, these studies have identified a new pathway that promotes liver proliferation in young mice and might contribute to the malignant transformations in the liver.  相似文献   

15.
16.
17.
Terminal differentiation is often coupled with irreversible loss of proliferative potential. The CCAAT enhancer binding protein alpha (C/EBPalpha) preferentially accumulates in postmitotic, differentiated 3T3-L1 adipocytes but declines during tumor necrosis factor alpha (TNFalpha)-induced dedifferentiation. We have discovered that this decline in C/EBPalpha correlates with an increased mitotic growth potential. In order to further investigate the antimitotic activity of C/EBPalpha, we introduced antisense C/EBPalpha RNA into 3T3-L1 cells to block endogenous C/EBPalpha expression. When treated according to the standard differentiation protocol, stable cells lines harboring antisense C/EBPalpha RNA did not differentiate into fat-laden adipocytes, consistent with previous findings (Lin F, Lane MD, Genes Dev 1992;6:533-544). We found that these undifferentiated cells expressing antisense-C/EBPalpha can reenter the cell cycle after mitogenic stimulation at a time in development when parental 3T3-L1 cells cannot. Moreover, the expression profiles of the growth-arrest-associated genes gas1 and gas2 revealed that the antisense C/EBPalpha-expressing cells withdrew from the cell cycle after the period of clonal expansion but failed to progress to the state of least proliferative potential characteristic of terminally differentiated adipocytes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号