首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of heterologous protein expression in Saccharomyces cerevisiae during continuous culture without selection for plasmid-containing cells was investigated. The protein chosen was the leech thrombin inhibitor desulphato-hirudin, which is tolerated well by S. cerevisiae when over-expressed. Expression was from a 2- derived multicopy vector containing a synthetic hirudin gene under control of the constitutive glyceraldehyde-3-phosphate dehydrogenase derived GAPFL promoter. The behaviour of the system was studied at three dilution rates (D) corresponding to approximately 30% (0.06 h–1), 60% (0.12 h–1) and 90% (0.17 h–1) of the estimated maximum D. The level of plasmid loss was low at all Ds, with only 5–10% plasmid-free cells observed at 75 generations. The plasmid was most stably maintained at the intermediate D of 0.12 h–1, where the rate of loss was comparable to the loss of the native 2- plasmid. Hirudin expression was also highest at D=0.12 h–1, possibly as a result of cell lysis at D=0.06 h–1 and D=0.17 h–1, leading to the release of vacuolar proteases and subsequent proteolysis of hirudin. Differences in expression levels were not a result of changes in plasmid copy number, which was in the range 40–60 throughout all three experiments. The high stability of this system at all Ds investigated shows that heterologous protein expression is not a burden to S. cerevisiae when the protein expressed is tolerated well. Correspondence to: M. Ibba  相似文献   

2.
The replicating plasmid, pDblet, transformed the budding yeast Kluyveromyces marxianus to an efficiency of 104 transformant g–1 DNA. Transformed cells showed 1% of segregation rate without affecting their growth rate of 0.69 h–1 and glucose consumption. These results were similar or better than the commonly used pE1 plasmid and suggests that pDblet can be used for cloning genes in K. marxianus.  相似文献   

3.
Summary Two newly isolated strains of Methanosarcina, strains JKAD and DALS, were grown in monoculture and in mixed culture in combination with Acetobacterium woodii WB1. Methanosarcina strains convert acetate into methane and carbon dioxide while Acetobacterium woodii grows on fructose, producing acetate via homoacetate fermentation. Monocultures of A. woodii in continuous culture consumed up to 6 mmoles g-1 dry weight (dw) h-1 of fructose and produced up to 12.9 mmoles g-1 dw h-1 of acetate at a dilution rate (D) of 0.13 h-1. In batch growth the methanogenic bacteria produced up to 12.1 mmoles g-1 dw h-1 of CH4 at a specific growth rate of 0.043 h-1. In continuous cultivation the specific growth rate and the specific methane production of Methanosarcina were lower than in batch cultures, with values of 0.031 h-1 and 3.1 mmoles g-1 dw h-1 of methane, respectively. In combination, A. woodii and Methanosarcina strain DALS in batch cultures completely converted fructose to methane and carbon dioxide with a maximum specific methane production rate of 1.9 mmoles g-1 dw h-1 of methane. In continuous cultivation these mixed cultures produced between 1.2 and 2 mmoles g-1 dw h-1 of CH4 at a dilution rate of up to 0.043 h-1. The methanogens were washed out at D values higher than 0.043 h-1 for A. woodii and Methanosarcina strain JKAD, and higher than 0.05 h-1 for A. woodii and Methanosarcina strain DALS. Data obtained from defined mixed cultures allow one to follow interactions in a mixed population of two species with different growth constants.  相似文献   

4.
A plasmid that expressed pyruvate carboxylase (PYC) from Rhizobium etli was introduced into Salmonella typhimurium LT2. Anaerobic fermentations of S. typhimurium with and without PYC were compared with glucose as a carbon source. The presence of PYC increased the succinate yield from glucose from 0.044 g g–1 to 0.22 g g–1, while the lactate yield decreased from 0.31 g g–1 to 0.16 g g–1. Metabolic flux calculations during the early growth phase indicate that under these growth conditions in the presence of PYC more carbon flows to oxaloacetate via pyruvate carboxylase than via phosphoenolpyruvate carboxylase. Also, under these growth and induction conditions, the presence of PYC diminished the cell growth rate from 0.34 h–1 to 0.28 h–1, the specific rate of ATP formation from 45 mmol l–1 h–1 to 27 mmol l–1 h–1, and the specific rate of glucose consumption from 17 mmol l–1 h–1 to 10 mmol l–1 h–1.  相似文献   

5.
Summary AnEscherichia coli K-12 strain harbouring either the plasmid pBR322, or the recombinant plasmid pKTH1220, a 14 kb derivative of pBR322, or no plasmid was grown in a chemostat. The cultivations were continued for 300–400 bacterial generations.E. coli hosts harbouring pBR322 or no plasmid grew in a similar way, but the growth of the host containing the big recombinant plasmid was slower. The plasmid copy numbers increased up to 2–3 fold as the dilution rate was increased from 0 to ca. 1 h–1. After this point the increase in dilution rate seemed to induce a rapid decrease in the plasmid copy numbers. High copy numbers could be maintained using dilution rates resulting in good productivity of the cell mass.  相似文献   

6.
The first establishment of a homologous expression system in the host Ralstonia pickettii CGMCC1596 using the compatible broad-host-range plasmid pWB5 is described. When whole cells of the recombinant strain R. pickettii MMYY01 (CGMCC1596/pYY05) were used as the biocatalyst to transform dl-4-hydroxyphenylhydantoin (dl-HPH) to d-4-hydroxyphenylglycine (d-HPG), the conversion rate reached 94 % in first 9 h, at a production rate of 2.8 g L−1 h−1, with the rapid reduction of the intermediate [N-carbamoyl-2-(4-hydroxyphenyl)glycine], compared with 80 % in >50 h at a rate of 0.5 g L−1 h−1 for the CGMCC1596. The stability of the recombinant plasmid pYY05 is sufficient for its application in industrial batch fermentation. An alternative strategy for the conversion of dl-HPH to d-HPG by resting CGMCC1596 cells and heterologous DCase expressed by E. coli is discussed.  相似文献   

7.
The kinetics of continuous l-sorbose fermentation using Acetobacter suboxydans with and without cell recycle (100%) were investigated at dilution rates (D) of 0.05, 0.10, 0.15 and 0.3 h–1. The biomass and sorbose concentrations for continuous fermentation without recycle increased as the dilution rate was increased from 0.05 to 0.10 h–1. A maximum biomass concentration of 8.44 g l–1 and sorbose concentration of 176.90 g l–1 were obtained at D=0.10 h–1. The specific rate of sorbose production and volumetric sorbose productivity at this dilution rate were 2.09 g g–1 h–1 and 17.69 g l–1 h–1. However, on further increasing the dilution rate to 0.3 h–1, both biomass and sorbose concentrations decreased to 2.93 and 73.20 g l–1 respectively, mainly due to washout of the reactor contents. However, the specific rate of sorbose formation and volumetric sorbose productivity at this dilution rate increased to 7.49 g g–1 h–1 and 21.96 g l–1 h–1 respectively. Continuous fermentation with 100% cell recycle served to further enhance the concentration of biomass and sorbose to 28.27 and 184.32 g l–1 respectively (in the reactor at a dilution rate of 0.05 h–1). Even though, there was a decline in the biomass and sorbose concentrations to 6.8 and 83.40 g l–1 at a dilution rate of 0.3 h–1, the specific rates of sorbose formation and volumetric sorbose productivity increased to 3.67 g g–1h–1 and 25.02 g l–1 h–1.  相似文献   

8.
Summary Maximum volumetric productivities of biomass (1.40 gl–1h–1) and lactic acid (8.93 gl–1h–1) for a continuous culture ofLactobacillus delbreuckii occurred between dilution rates 0.35h–1 and 0.40h–1. All major nutrients were in excess in these cultures. Glucose utilisation was complete at dilution rates of 0.1h–1 and lower. Product and biomass yields were constant in the dilution rate range studied (0.05h–1 to 0.50h–1).  相似文献   

9.
The grazing impact of a natural assemblage of metazoan zooplankton on pigmented flagellates (PF), heterotrophic nanoflagellates (HNF), ciliates, and non-flagellate algae and microcyanobacteria (NFAM) was measured in situ during the period of thermal stratification in a newly flooded reservoir (Reservoir de la Sep, France). Experiments were conducted with diffusion chambers in the meta- and epilimnion over a period of 7 h. The mean mortalities of PF in the epi- and metalimnion (0.08 0.02 and 0.06 ± 0.03 h-1, respectively), of HNF (0.04 ± 0.02 and 0.05 ± 0.02 h-1) and ciliates (0.09 ± 0.04 and 0.11 ± 0.04 h-1) demonstrate the impact of the metazoan zooplankton, and particularly of the rotifer Asplanchna priodonta, on the components of the microbial loop. The mortality of NFAM, accounting for 14 and 18% of total mortality, remained low throughout the study. The taxa with the highest mortality were pigmented flagellates of 4-19 m, HNF, and small-sized ciliates such as Halteria sp. (0.10 ± 0.02 h-1 at 1 m and 0.30 ± 0.38 h-1 at 7 m) and Urotricha furcata (0.11 ± 0.05 h-1 at 1 m and 0.12 ± 0.06 h-1 at 7 m). Large-sized ciliates (Paradileptus elephantinus) and sessile ciliates (Suctorida, Vorticella sp.) had a very low mortality (>0.04 h-1). After reservoir flooding, the organisms in the microbial trophic loop, favoured by the high quantities of allochthonous organic matter, are subject to a higher mortality than the phytoplankton.   相似文献   

10.
The mathematical model of an aerobic culture of recombinant yeast presented in work by Zhang et al. (1997) is given by a differential-algebraic system. The classical nonlinear observer algorithms are generally based on ordinary differential equations. In this paper, first we extend the nonlinear observer synthesis to differential-algebraic dynamical systems. Next, we apply this observer theory to the mathematical model proposed in Zhang et al. (1997). More precisely, based on the total cell concentration and the recombinant protein concentration, the observer gives the online estimation of the glucose, the ethanol, the plasmid-bearing cell concentration and a parameter that represents the probability of plasmid loss of plasmid-bearing cells. Numerical simulations are given to show the good performances of the designed observer.Symbols C 1 activity of pacing enzyme pool for glucose fermentation (dimensionless) - C 2 activity of pacing enzyme pool for glucose oxidation (dimensionless) - C 3 activity of pacing enzyme pool for ethanol oxidation (dimensionless) - E ethanol concentration (g/l) - G glucose concentration (g/l) - k a regulation constant for (g glucose/g cell h–1) - k b regulation constant for (dimensionless) - k c regulation constant for (g glucose/g cell h–1) - k d regulation constant for (dimensionless) - K m1 saturation constant for glucose fermentation (g/l) - K m2 saturation constant for glucose oxidation (g/l) - K m3 saturation constant for ethanol oxidation (g/l) - L ( t) time lag function (dimensionless) - p probability of plasmid loss of plasmid-bearing cells (dimensionless) - P recombinant protein concentration (mg/g cell) - q G total glucose flux culture time (g glucose/g cell h) - t culture time (h) - t lag lag time (h) - X total cell concentration (g/l) - X + plasmid-bearing cell concentration (g/l) - Y F X / G cell yield for glucose fermentation pathway (g cell/g glucose) - Y O X / G cell yield for glucose oxidation pathway (g cell/g glucose) - Y X / E cell yield for ethanol oxidation pathway (g cell/g ethanol) - Y E / X ethanol yield for fermentation pathway based on cell mass (g ethanol·g cell) - 2 glucoamylase yield for glucose oxidation (units/g cell) - 3 glucoamylase yield for ethanol oxidation (units/g cell) - µ1 specific growth rate for glucose fermentation (h–1) - µ2 specific growth rate for glucose oxidation (h–1) - µ3 specific growth rate for ethanol oxidation (h–1) - µ1max maximum specific growth rate for glucose fermentation (h–1) - µ2max maximum specific growth rate for glucose oxidation (h–1) - µ3max maximum specific growth rate for ethanol oxidation (h–1)  相似文献   

11.
Escherichia coli TG1, transformed with an expression plasmid pAQN carrying the aqualysin I (AQI) gene derived from Thermus aquaticus YT-1 under the control of the tac promoter, was cultivated under various conditions in order to find fermentation conditions for the efficient production of the thermophilic protease, AQI. The amount of AQI produced was closely related to the growth phase at the time of isopropyl--d-thiogalactopyranoside (IPTG) induction, and the highest production was obtained when it was added during the exponential growth phase. The addition of yeast extract had a greater effect on AQI production than did Polypeptone or casamino acids, and AQI productivity increased from 1.1 × 103 kU/g to 2.7 × 103 kU/g cells when 2 g/l yeast extract was supplied. Furthermore, the specific growth rate improved from 0.35 h–1 to 0.89 h–1 when 5 g/l yeast extract was supplied. The culture temperature also affected AQI gene expression. When the temperature was shifted from 37°C to 34°C at the time of IPTG induction, 19 kU/ml enzymatically active AQI was obtained, corresponding to a 28% increase over the amount produced in a batch culture without a shift. This is about a 44-fold higher yield than was obtained from the original strain, T. aquaticus YT-1.  相似文献   

12.
A recombinant Escherichia coli strain (E. coli NO3) containing genomic DNA fragments from azo-reducing wild-type Pseudomonas luteola strain decolorized a reactive azo dye (C.I. Reactive Red 22) at approx. 17 mg dye h–1 g cell. The ability to decolorize the azo dye probably did not originate from the plasmid DNA. Acclimation in azo-dye-containing media gave a nearly 10% increase in the decolorization rate of E. coli NO3. Growth with 1.25 g glucose l–1 completely stopped the decolorization activity. When the decolorization metabolites from E. coli NO3 were analyzed by HPLC and MS, the results suggested that decolorization of the azo dye may be due to cleavage of the azo bond.  相似文献   

13.
The long-term performance and stability of Pseudomonas putida mt-2 cultures, a toluene-sensitive strain harboring the genes responsible for toluene biodegradation in the archetypal plasmid pWW0, was investigated in a chemostat bioreactor functioning under real case operating conditions. The process was operated at a dilution rate of 0.1 h−1 under toluene loading rates of 259 ± 23 and 801 ± 78 g m−3 h−1 (inlet toluene concentrations of 3.5 and 10.9 g m−3, respectively). Despite the deleterious effects of toluene and its degradation intermediates, the phenotype of this sensitive P. putida culture rapidly recovered from a 95% Tol population at day 4 to approx. 100% Tol+ cells from day 13 onward, sustaining elimination capacities of 232 ± 10 g m−3 h−1 at 3.5 g Tol m−3 and 377 ± 13 g m−3 h−1 at 10.9 g Tol m−3, which were comparable to those achieved by highly tolerant strains such as P. putida DOT T1E and P. putida F1 under identical experimental conditions. Only one type of Tol variant, harboring a TOL-like plasmid with a 38.5 kb deletion (containing the upper and meta operons for toluene biodegradation), was identified.  相似文献   

14.
The hydrogenase gene from Enterobacter cloacae (IIT-BT 08) was amplified and inserted into a prokaryotic expression vector to create a recombinant plasmid (pGEX-4T-2-Cat/hydA). The recombinant plasmid was transformed into a hydrogen-producing strain of Enterobacter aerogenes (ATCC13408). SDS–PAGE and western blot analysis confirmed the successful expression of the GST-tagged hydA protein. Anaerobic fermentation for the production of hydrogen from glucose was investigated using E. aerogenes ATCC13408 and the recombinant strain. The results showed that the hydrogen yield markedly increased, from 442.82 ± 22.61 ml/g glucose in the ATCC13408 strain to 864.02 ± 36.8 ml/g glucose in the recombinant. The maximum rate of hydrogen production was found to be 53.49 ± 3.34 ml l−1 h−1 using 1% (w/v) glucose as the substrate at pH 6.0 and a reaction temperature of 37°C.  相似文献   

15.
Factors affecting the rates of plasmid transfer were investigated using Escherichia coli LC102 bearing a conjugative plasmid R100-1 and E. coli DH1. The rate constant of transconjugant increase, kti, was used for presenting the degree of plasmid transmissibility instead of the plasmid transfer efficiency (pte). The rate constant was defined as the specific rate of transconjugant increase (srti, the number of transconjugants per donor per h) divided by the recipient cell concentration. The kti values ranged between 10−10 and 10−15 ml cells−1 h−1, when estimated under various conditions. Moderate liquid agitation had a favorable effect on ktf but agitation rates higher than 33 s−1 (intergrated shear force) greatly decreased the value of kti. The transconjugant-forming activity of the cells growing in continuous culture did not significantly change with the dilution rate, except those growing at dilution rates less than 0.1 h−1. The rate constant kti at temperatures of 10–15°C was as low as the detection limit (10−15 ml cells−1 h−1).  相似文献   

16.
Summary A test system was set up where the build-up of a biofilm on a defined surface could be studied in a carbon source limited chemostat.The attachment of P. putida ATCC 11172 to glass when growing on L-asparagine was studied at different dilution rates (specific growth rates) from 0.1 to 1.5 h–1 The number of attached colony forming units (cfu) increased with dilution rate from 1×106 cfu/cm2 at 0.1 h–1 to 4×107 cfu/cm2 at 1.0 h–1 and then the attachment decreased to about 6×106 cfu/cm2 at higher dilution rates (1.1–1.5 h–1). The number of attached cfu was measured after 24 h exposure. The value of the maximum specific growth rate in batch culture was 0.6 h–1.The total amount of attached cell-mass followed roughly the same pattern as the viable count.The viable count of the cells suspended in the growth medium showed its lowest value at the same dilution rate as resulted in maximum adhesion.It was shown that the effect of growth rate on the biofilm build-up of P. putida is significant, and ought to be borne in mind when continuous culture systems are set up and results evaluated.  相似文献   

17.
Summary The anaerobic degradation of p-cresol under denitrifying conditions by a bacterial consortium was studied in batch and continuous cultures. Concentrations up to 3 mm were degraded within 5–6 days with 4-hydroxybenzyl alcohol, 4-hydroxybenzaldehyde and 4-hydroxybenzoate as intermediates. Steady states could be maintained at only one dilution rate, D=0.04 h–1. A further increase in the dilution rate to 0.0 8 h–1 resulted in culture wash-out. An estimation of the Saturation constant was made (<1 mg/l), taking the maximum specific growth rate as 0.045 h–1, thus yielding a value of 0.125 mg p-cresol/l. Correspondence to: N. Khoury  相似文献   

18.
Styrene was degraded as sole source of carbon and energy by a selected bacterial community in a two-phase aqueous-organic medium (80%:20%, vol/vol). Silicone oil was used to solubilize styrene, which is sparingly soluble in water and to prevent its toxicity toward microorganisms. Preliminary studies with the mixed population in batch cultures indicate that the specific activity and the maximum growth rate at optimal 3H 6.0 were 46 mg·g–1·h–1 and 0.15 h–1, respectively. In pH-regulated chemostat cultures, styrene was degraded at dilution rates ranging from 0.05 to 0.20 h–1. Kinetic parameters and the proportion of each strain in the mixed culture were followed. At 0.20 h–1, only one strain as compared to four initially present, remained in the medium. This strain Pseudomonas aeruginosa, degrades styrene with a specific activity of 293 mg·g–1·h–1. Such results could lead to industrial treatment of waste gas or water polluted with styrene. Correspondence to: J,-M. Lebeault  相似文献   

19.
Bacterial consumption by metazoan zooplankton and phagotrophic protists was measured in situ during the period of thermal stratification in the epilimnion (1 m) and metalimnion (7 m) of a newly flooded reservoir (Sep reservoir, France). The mean bacterial consumption was 2.53 x 106 bacterial l-1 h-1 at 1m and 0.97 x 106 bacteria l-1 h-1 at 7m. The main consumers over the whole study period were the cladocerans Daphnia longispina and Ceriodaphnia quadrangula, accounting on average for 72% of the potential total predation of bacteria at 1 m and 56% at m, especially during the months of May-June and August. Heterotrophic nanoflagellates (HNF), which accounted for 12% estimated total predation of bacteria at 1 m and 13% at 7m, only exerted a limited predation, mainly by a Monas-type cell. Ciliates, dominated in terms of abundance by Pelagohalteria viridis, accounted for 4% of total predation in the epilimnion (0.00-0.42 x 106 bacteria l-1 h-1). In a newly flooded reservoir, metazoan zooplankton appear to be the main consumers of bacteria. Predation of ciliates and HNF by zooplanktonic crustaceans could account for the low contribution of components of the microbial loop to bacterial consumption.   相似文献   

20.
Aims: To determine the contribution of potential modes of action of a Bacillus cereus aquaculture biological control agent in inhibition of the fish pathogen, Aeromonas hydrophila. Methods and Results: When B. cereus was tested in plate well inhibition studies, no production of antimicrobial compounds was detected. Bacillus cereus had a high growth rate (0·96 h?1), whereas Aer. hydrophila concentration decreased by c. 70% in co‐culture experiments. In nutrient limitation studies, B. cereus had a significantly higher growth rate when cultured under glucose (P < 0·05) and iron (P < 0·01) limitation in comparison with Aer. hydrophila. Bacillus cereus glucose (0·30 g l?1 h?1) and iron (0·60 mg l?1 h?1) uptake rates were also significantly higher (P < 0·01) than the Aer. hydrophila glucose (0·14 g l?1 h?1) and iron (0·43 mg l?1 h?1) uptake rates. Iron uptake was facilitated by siderophore production shown in time profile studies where relative siderophore production was c. 60% through the late exponential and sporulation phases. Conclusions: Competitive exclusion by higher growth rate, competition for organic carbon and iron, facilitated by siderophore production, could be identified as mechanisms of pathogen growth inhibition by B. cereus. Significance and Impact of the Study: This study is the first elucidation of the mechanism of action of our novel B. cereus biological agent in growth attenuation of pathogenic Aer. hydrophila. This study enhances the application knowledge and attractiveness for adoption of B. cereus NRRL 100132 for exploitation in aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号