首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NodMl-V(C(18:1), Me, Cb, AcFuc) is a major component of lipo-chitin oligosaccharides (LCOs), or Nod factors, produced by Mesorhizobium loti. The presence of a 4-O-acetylated fucosyl residue (AcFuc) at the reducing end has been thought to be essential for symbiotic interactions with the compatible host plant, Lotus japonicus. We generated an M. loti mutant in which the nolL gene is disrupted; nolL has been shown to encode acetyltransferase that is responsible for acetylation of the fucosyl residue. The nolL disruptant Ml107 produced LCOs that lacked acetylation of fucosyl residues as expected, but exhibited nodulation performance on L. japonicus as efficiently as the wild-type M. loti strain MAFF303099. We show that LCOs without acetylation of a fucosyl residue purified from Ml107 are also able to induce abundant root hair deformation and nodule primordium formation. These results indicate that NolL-dependent acetylation of a fucosyl residue at the reducing end of M. loti LCOs is not essential for nodulation of L. japonicus.  相似文献   

2.
慢生根瘤菌属结瘤基因的进化及遗传分析   总被引:3,自引:0,他引:3  
侯卫国  连宾 《遗传》2007,29(1):118-126
根瘤菌中存在一系列控制固氮结瘤因子(lipo-chito-oligosaccharides)合成的结瘤基因(nodulation genes)。其中, nodA基因是合成结瘤因子所必需的, 该基因负责酰基转移酶的合成, 能将不饱和脂肪酸转移到结瘤因子寡聚糖骨架上; 基因nodZ, nolL和noeI为宿主专一性结瘤基因, 分别转录合成岩藻糖基转移酶, 岩藻糖乙酰化酶和岩藻糖甲基化酶。通过GenBank调取慢生根瘤菌属及其他根瘤菌属的结瘤基因nodA, nodZ, nolL和noeI, 构建系统发育树, 进行进化和遗传分析。结果表明, 慢生根瘤菌属各个菌株的nodA, nodZ, nolL和noeI具有很高的相关性, 但是与根据保守基因16S rDNA和dnaK分类情况不完全相符。这表明慢生根瘤菌属的结瘤基因主要是通过直系遗传的, 同时可能为适应宿主及环境条件, 结瘤基因有少量的平行转移。结果表明, 慢生根瘤菌属各个菌株的nodA, nodZ, nolL和noeI具有很高的同源性, 同时发现基于保守基因16S rDNA和dnaK对慢生根瘤菌的分类情况与慢生根瘤菌属各菌株在nodA, nodZ, nolL和noeI具有较高同源性的事实不完全相符。这表明慢生根瘤菌属的结瘤基因主要是通过直系遗传的, 同时可能为适应宿主及环境条件, 结瘤基因有少量的平行转移。  相似文献   

3.
Heterologous expression of NodZ and NolL proteins in Rhizobium leguminosarum bv. viciae led to the production of acetyl fucosylated lipo-chitin oligosaccharides (LCOs), indicating that the NolL protein obtained from Mesorhizobium loti functions as an acetyl transferase. We show that the NolL-dependent acetylation is specific for the fucosyl penta-N-acetylglucosamine species. In addition, the NolL protein caused elevated production of LCOs. Efficient nodulation of Lotus japonicus by the NodZ/NolL-producing strain was demonstrated. Nodulation efficiency was further improved by the addition of the ethylene inhibitor L-alpha-(2-aminoethoxyvinyl) glycine (AVG).  相似文献   

4.
Symbiotic nitrogen fixing bacteria-known as rhizobia-harbour a set of nodulation (nod) genes that control the synthesis of modified lipo-chitooligosaccharides, called Nod factors that are required for legume nodulation. The nodA gene, which is essential for symbiosis, is responsible for the attachment of the fatty acid group to the oligosaccharide backbone. The nodZ, nolL, and noeI genes are involved in specific modifications of Nod factors common to bradyrhizobia, i.e., the transfer of a fucosyl group on the Nod factor core, fucose acetylation and fucose methylation, respectively. PCR amplification, sequencing and phylogenetic analysis of nodA gene sequences from a collection of diverse Bradyrhizobium strains revealed the monophyletic character with the possible exception of photosynthetic Bradyrhizobium, despite high sequence diversity. The distribution of the nodZ, nolL, and noeI genes in the studied strains, as assessed by gene amplification, hybridization or sequencing, was found to correlate with the nodA tree topology. Moreover, the nodA, nodZ, and noeI phylogenies were largely congruent, but did not closely follow the taxonomy of the strains shown by the housekeeping 16S rRNA and dnaK genes. Additionally, the distribution of nodZ, noeI, and nolL genes suggested that their presence may be related to the requirements of their legume hosts. These data indicated that the spread and maintenance of nodulation genes within the Bradyrhizobium genus occurred through vertical transmission, although lateral gene transfer also played a significant role.  相似文献   

5.
6.
LCOs (lipochitin oligosaccharides, Nod factors) produced by the rhizobial symbiote of Vicia sativa subsp. nigra (vetch, an indeterminate-type nodulating plant) are mitogenic when carrying an 18:4 acyl chain but not when carrying an 18:1 acyl chain. This suggests that the 18:4 acyl chain specifically contributes to signaling in indeterminate-type nodulation. In a working hypothesis, we speculated that the 18:4 acyl chain is involved in oxylipin signaling comparable to, for example, signaling by derivatives of the 18:3 fatty acid linolenic acid (the octadecanoid pathway). Because salicylic acid (SA) is known to interfere with oxylipin signaling, we tested whether nodulation of vetch could be affected by addition of 10(-4) M SA. This concentration completely blocked nodulation of vetch by Rhizobium leguminosarum bv. viciae and inhibited the mitogenic effect of 18:4 LCOs but did not affect LCO-induced root-hair deformation. SA did not act systemically, and only biologically active SA derivatives were capable of inhibiting nodule formation. SA also inhibited R. leguminosarum bv. viciae association with vetch roots. In contrast, addition of SA to Lotus japonicus (a determinate-type nodulating plant responding to 18:1 LCOs) did not inhibit nodulation by Mesorhizobium loti. Other indeterminate-type nodulating plants showed the same inhibiting response toward SA, whereas SA did not inhibit the nodulation of other determinate-type nodulating plants. SA may be a useful tool for studying fundamental differences between signal transduction pathways of indeterminate- and determinate-type nodulating plants.  相似文献   

7.
In order to define the symbiotic role of some of the chemical substituents in the Rhizobium etli Nod factors (NFs), we purified Nod metabolites secreted by the SM25 strain, which carries most of the nodulation genes, and SM17 with an insertion in nodS. These NFs were analyzed for their capabilities to induce root hair curling and cytoskeletal rearrangements. The NFs secreted by strain SM17 lack the carbamoyl and methyl substituents on the nonreducing terminal residue and an acetyl moiety on the fucosyl residue on the reducing-terminal residue as determined by mass spectrometry. We have reported previously that the root hair cell actin cytoskeleton from bean responds with a rapid fragmentation of the actin bundles within 5 min of NF exposure, and also is accompanied by increases in the apical influxes and intracellular calcium levels. In this article, we report that methyl-bearing NFs are more active in inducing root hair curling and actin cytoskeleton rearrangements than nonmethylated NFs. However, the carbamoyl residue on the nonreducing terminal residue and the acetyl group at the fucosyl residue on the reducing terminal residue do not seem to have any effect on root hair curling induction or in actin cytoskeleton rearrangement.  相似文献   

8.
The nodulation genes of rhizobia are involved in the production of the lipo-chitin oligosaccharides (LCO), which are signal molecules required for nodule formation. A mutation in nodZ of Bradyrhizobium japonicum results in the synthesis of nodulation signals lacking the wild-type 2- O -methylfucose residue at the reducing-terminal N -acetylglucosamine. This phenotype is correlated with a defective nodulation of siratro ( Macroptilium atropurpureum ). Here we show that transfer of nodZ to Rhizobium leguminosarum biovar (bv) viciae , which produces LCOs that are not modified at the reducing-terminal N -acetylglucosamine, results in production of LCOs with a fucosyl residue on C-6 of the reducing-terminal N -acetylglucosamine. This finding, together with in vitro enzymatic assays, indicates that the product of nodZ functions as a fucosyltransferase. The transconjugant R. leguminosarum strain producing fucosylated LCOs acquires the capacity to nodulate M. atropurpureum Glycine soja Vigna unguiculata and Leucaena leucocephala . Therefore, nodZ extends the narrow host range of R. leguminosarum bv. viciae to include various tropical legumes. However, microscopic analysis of nodules induced on siratro shows that these nodules do not contain bacteroids, showing that transfer of nodZ does not allow R. leguminosarum to engage in a nitrogen-fixing symbiosis with this plant.  相似文献   

9.
Azorhizobium caulinodans ORS571 synthesizes mainly pentameric Nod factors with a household fatty acid, an N-methyl, and a 6-O-carbamoyl group at the nonreducing-terminal residue and with a d-arabinosyl, an l-fucosyl group, or both at the reducing-terminal residue. Nodulation on Sesbania rostrata was carried out with a set of bacterial mutants that produce well characterized Nod factor populations. Purified Nod factors were tested for their capacity to induce root hair formation and for their stability in an in vitro degradation assay with extracts of uninfected adventitious rootlets. The glycosylations increased synergistically the nodulation efficiency and the capacity to induce root hairs, and they protected the Nod factor against degradation. The d-arabinosyl group was more important than the l-fucosyl group for nodulation efficiency. Replacement of the 6-O-l-fucosyl group by a 6-O-sulfate ester did not affect Nod factor stability, but reduced nodulation efficiency, indicating that the l-fucosyl group may play a role in recognition. The 6-O-carbamoyl group contributes to nodulation efficiency, biological activity, and protection, but could be replaced by a 6-O-acetyl group for root nodulation. The results demonstrate that none of the studied substitutions is strictly required for triggering normal nodule formation. However, the nodulation efficiency was greatly determined by the synergistic presence of substitutions. Within the range tested, fluctuations of Nod factor amounts had little impact on the symbiotic phenotype.  相似文献   

10.
Cultivar Afghanistan peas are resistant to nodulation by many strains of Rhizobium leguminosarum bv. viciae but are nodulated by strain TOM, which carries the host specificity gene nodX. Some strains that lack nodX can inhibit nodulation of cv. Afghanistan by strain TOM. We present evidence that this "competitive nodulation-blocking" (Cnb) phenotype may result from high levels of Nod factors inhibiting nodulation of cv. Afghanistan peas. The TOM nod gene region (including nodX) is cloned on pIJ1095, and strains (including TOM itself) carrying pIJ1095 nodulate cv. Afghanistan peas very poorly but can nodulate other varieties normally. The presence of pIJ1095, which causes increased levels of Nod factor production, correlates with Cnb. Nodulation of cv. Afghanistan by TOM is also inhibited by a cloned nodD gene that increases nod gene expression and Nod factor production. Nodulation of cv. Afghanistan can be stimulated if nodD on pIJ1095 is mutated, thus severely reducing the level of Nod factor produced. Repression of nod gene expression by nolR eliminates the Cnb phenotype and can stimulate nodulation of cv. Afghanistan. Addition of Nod factors to cv. Afghanistan roots strongly inhibits nodulation. The Cnb+ strains and added Nod factors inhibit infection thread initiation by strain TOM. The sym2A allele determines resistance of cv. Afghanistan to nodulation by strains of R. leguminosarum bv. viciae lacking nodX. We tested whether sym2A is involved in Cnb by using a pea line carrying the sym2A region introgressed from cv. Afghanistan; nodulation in the introgressed line was inhibited by Cnb+ strains. Therefore, the sym2A region has an effect on Cnb, although another locus (or loci) may contribute to the stronger Cnb seen in cv. Afghanistan.  相似文献   

11.
A Rhizobium etli Tn5 insertion mutant, LM01, was selected for its inability to use glutamine as the sole carbon and nitrogen source. The Tn5 insertion in LM01 was localized to the rsh gene, which encodes a member of the RelA/SpoT family of proteins. The LM01 mutant was affected in the ability to use amino acids and nitrate as nitrogen sources and was unable to accumulate (p)ppGpp when grown under carbon and nitrogen starvation, as opposed to the wild-type strain, which accumulated (p)ppGpp under these conditions. The R. etli rsh gene was found to restore (p)ppGpp accumulation to a DeltarelA DeltaspoT mutant of Escherichia coli. The R. etli Rsh protein consists of 744 amino acids, and the Tn5 insertion in LM01 results in the synthesis of a truncated protein of 329 amino acids; complementation experiments indicate that this truncated protein is still capable of (p)ppGpp hydrolysis. A second rsh mutant of R. etli, strain AC1, was constructed by inserting an Omega element at the beginning of the rsh gene, resulting in a null allele. Both AC1 and LM01 were affected in Nod factor production, which was constitutive in both strains, and in nodulation; nodules produced by the rsh mutants in Phaseolus vulgaris were smaller than those produced by the wild-type strain and did not fix nitrogen. In addition, electron microscopy revealed that the mutant bacteroids lacked poly-beta-hydroxybutyrate granules. These results indicate a central role for the stringent response in symbiosis.  相似文献   

12.
Lipid A of Rhizobium etli CE3 differs dramatically from that of other Gram-negative bacteria. Key features include the presence of an unusual C28 acyl chain, a galacturonic acid moiety at position 4', and an acylated aminogluconate unit in place of the proximal glucosamine. In addition, R. etli lipid A is reported to lack phosphate and acyloxyacyl residues. Most of these remarkable structural claims are consistent with our recent enzymatic studies. However, the proposed R. etli lipid A structure is inconsistent with the ability of the precursor (3-deoxy-D-manno-octulosonic acid)(2)-4'-(32)P-lipid IV(A) to accept a C28 chain in vitro (Brozek, K. A., Carlson, R. W., and Raetz, C. R. H. (1996) J. Biol. Chem. 271, 32126-32136). To re-evaluate the structure, CE3 lipid A was isolated by new chromatographic procedures. CE3 lipid A is now resolved into six related components. Aminogluconate is present in D-1, D-2, and E, whereas B and C contain the typical glucosamine disaccharide seen in lipid A of most other bacteria. All the components possess a peculiar acyloxyacyl moiety at position 2', which includes the ester-linked C28 chain. As judged by mass spectrometry, the distal glucosamine units of A through E are the same, but the proximal units are variable. As described in the accompanying article (Que, N. L. S., Ribeiro, A. A., and Raetz, C. R. H. (2000) J. Biol. Chem. 275, 28017-28027), the discovery of component B suggests a plausible enzymatic pathway for the biosynthesis of the aminogluconate residue found in species D-1, D-2, and E of R. etli lipid A. We suggest that the unusual lipid A species of R. etli might be essential during symbiosis with leguminous host plants.  相似文献   

13.
14.
van Rhijn P  RB Goldberg    AM Hirsch 《The Plant cell》1998,10(8):1233-1250
Plant lectins have been implicated as playing an important role in mediating recognition and specificity in the Rhizobium-legume nitrogen-fixing symbiosis. To test this hypothesis, we introduced the soybean lectin gene Le1 either behind its own promoter or behind the cauliflower mosaic virus 35S promoter into Lotus corniculatus, which is nodulated by R. loti. We found that nodulelike outgrowths developed on transgenic L. corniculatus plant roots in response to Bradyrhizobium japonicum, which nodulates soybean and not Lotus spp. Soybean lectin was properly targeted to L. corniculatus root hairs, and although infection threads formed, they aborted in epidermal or hypodermal cells. Mutation of the lectin sugar binding site abolished infection thread formation and nodulation. Incubation of bradyrhizobia in the nodulation (nod) gene-inducing flavonoid genistein increased the number of nodulelike outgrowths on transgenic L. corniculatus roots. Studies of bacterial mutants, however, suggest that a component of the exopolysaccharide surface of B. japonicum, rather than Nod factor, is required for extension of host range to the transgenic L. corniculatus plants.  相似文献   

15.
Early stages of nodulation involve the exchange of signals between the bacterium and the host plant. Bacterial nodulation (nod) genes are required for Rhizobium spp. to synthesize lipooligosaccharide morphogens, termed Nod factors. The common nod genes encode enzymes that synthesize the factor core structure, which is modified by host-specific gene products. Here we show direct in vitro evidence that Rhizobium meliloti NodH, a host-specific nodulation gene, catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate to the terminal 6-O position of Nod factors, and we show substrate requirements for the reaction. Our results indicate that polymerization of the chitooligosaccharide backbone likely precedes sulfation and that sulfation is not absolutely dependent on the presence or the particular structure of the N-acyl modification. NodH sulfation provides a tool for the enzymatic in vitro synthesis of novel Nod factors, or putative Nod factors intermediates, with high specific activity.  相似文献   

16.
Rhizobium leguminosarum bv. viciae, which nodulates pea and vetch, makes a mixture of secreted nodulation signals (Nod factors) carrying either a C18:4 or a C18:1 N-linked acyl chain. Mutation of nodE blocks the formation of the C18:4 acyl chain, and nodE mutants, which produce only C18:1-containing Nod factors, are less efficient at nodulating pea. However, there is significant natural variation in the levels of nodulation of different pea cultivars by a nodE mutant of R. leguminosarum bv. viciae. Using recombinant inbred lines from two pea cultivars, one which nodulated relatively well and one very poorly by the nodE mutant, we mapped the nodE-dependent nodulation phenotype to a locus on pea linkage group I. This was close to Sym37 and PsK1, predicted to encode LysM-domain Nod-factor receptor-like proteins; the Sym2 locus that confers Nod-factor-specific nodulation is also in this region. We confirmed the map location using an introgression line carrying this region. Our data indicate that the nodE-dependent nodulation is not determined by the Sym2 locus. We identified several pea lines that are nodulated very poorly by the R. leguminosarum bv. viciae nodE mutant, sequenced the DNA of the predicted LysM-receptor domains of Sym37 and PsK1, and compared the sequences with those derived from pea cultivars that were relatively well nodulated by the nodE mutant. This revealed that one haplotype (encoding six conserved polymorphisms) of Sym37 is associated with very poor nodulation by the nodE mutant. There was no such correlation with polymorphisms at the PsK1 locus. We conclude that the natural variation in nodE-dependent nodulation in pea is most probably determined by the Sym37 haplotype.  相似文献   

17.
A subset of CLAVATA3/endosperm-surrounding region-related (CLE) peptides are involved in autoregulation of nodulation (AON) in Medicago truncatula (e.g. MtCLE12 and MtCLE13). However, their linkage to other components of the AON pathways downstream of the shoot-derived inhibitor (SDI) is not understood. We have ectopically expressed the putative peptide ligand encoding genes MtCLE12 and MtCLE13 in M. truncatula which abolished nodulation completely in wild-type roots but not in the supernodulating null mutant sunn-4. Further, root growth inhibition was detected when MtCLE12 was ectopically expressed in wild-type roots or synthetic CLE12 peptide was applied exogenously. To identify downstream genes, roots of wild-type and sunn-4 mutant overexpressing MtCLE12 were used for quantitative gene expression analysis. We found that, in 35S:MtCLE12 roots, NODULE INCEPTION (NIN, a central regulator of nodulation) was down-regulated, whereas MtEFD (ethylene response factor required for nodule differentiation) and MtRR8 (a type-A response regulator thought to be involved in the negative regulation of cytokinin signaling), were up-regulated. Moreover, we found that the up-regulation of MtEFD and MtRR8 caused by overexpressing MtCLE12 is SUNN-dependent. Hence, our data link for the first time the pathways for Nod factor signaling, cytokinin perception and AON.  相似文献   

18.
Lipooligosaccharides, synthesized by soil bacteria of the genera Rhizobium, are known to have multifunctional effects on a wide variety of plants as signal substances in symbiosis initiation, cell response elicitation and growth regulation. These so called nodulation (Nod-) factors represent interesting biotechnological products with respect to fundamental studies of symbiotic interactions as well as for potential applications. Therefore, a batch fermentation process on a scale of 30 l has been developed by means of the Rhizobium meliloti strain R.m. 1021 (pEK327) strongly overexpressing the genes for the synthesis of Nod factors. Induction by the flavone luteolin led to growth associated production of the lipooligosaccharides. Ultrafiltration was used for separating the biomass from the filtrate containing the extracellular Nod factors. Simultaneously, ultrafiltration reduced the amount of lipophilic substances, which would otherwise interfere with processes downstream. The second separation step consisted in adsorption on XAD-2, a nonspecific hydrophobic adsorptive resin. Adsorption of Nod factors was carried out by batch operation of a stirred tank. Desorption was performed by elution with methanol in a fixed bed column. A semi-preparative reversed phase HPLC (Polygoprep 100-30 C18) was chosen as the final purification step. The Nod factors were obtained after evaporation and lyophilization. Thus, about 600 mg of Nod factors were produced from 20 l of fermentation broth. The Nod factors produced by Rhizobium meliloti R.m. 1021 (pEK327) were identified by liquid secondary ion mass spectrometry and by reversed-phase HPLC as fluorescent derivatives of 2-aminobenzamide. The biological activity of the products was demonstrated by means of the root hair deformation (HAD-) assay. Abbreviations: ads, adsorption; 2-AB, 2-aminobenzamide; BDA, borane dimethylamine complex; Da, Dalton; DMSO, dimethyl sulfoxid; HAC, root hair curling; HAD, root hair deformation; HPLC, high performance liquid chromatography; LSIMS, liquid secondary ion mass spectrometry; MeOH, methanol; Nod, nodulation; OD, optical density; R.m., Rhizobium meliloti; RP, reversed phase; Tc, tetracycline; TY, trypton-yeast; UF, ultrafiltration; UV-Vis, ultraviolet-visible This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Gibberellins are involved in nodulation of Sesbania rostrata   总被引:1,自引:0,他引:1       下载免费PDF全文
Upon submergence, Azorhizobium caulinodans infects the semiaquatic legume Sesbania rostrata via the intercellular crack entry process, resulting in lateral root-based nodules. A gene encoding a gibberellin (GA) 20-oxidase, SrGA20ox1, involved in GA biosynthesis, was transiently up-regulated during lateral root base nodulation. Two SrGA20ox1 expression patterns were identified, one related to intercellular infection and a second observed in nodule meristem descendants. The infection-related expression pattern depended on bacterially produced nodulation (Nod) factors. Pharmacological studies demonstrated that GAs were involved in infection pocket and infection thread formation, two Nod factor-dependent events that initiate lateral root base nodulation, and that they were also needed for nodule primordium development. Moreover, GAs inhibited the root hair curling process. These results show that GAs are Nod factor downstream signals for nodulation in hydroponic growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号