首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The replicase gene (gene 1) of the coronavirus mouse hepatitis virus (MHV) encodes two co-amino-terminal polyproteins presumed to incorporate all the virus-encoded proteins necessary for viral RNA synthesis. The polyproteins are cotranslationally processed by viral proteinases into at least 15 mature proteins, including four predicted cleavage products of less than 25 kDa that together would comprise the final 59 kDa of protein translated from open reading frame 1a. Monospecific antibodies directed against the four distinct domains detected proteins of 10, 12, and 15 kDa (p1a-10, p1a-12, and p1a-15) in MHV-A59-infected DBT cells, in addition to a previously identified 22-kDa protein (p1a-22). When infected cells were probed by immunofluorescence laser confocal microscopy, p1a-10, -22, -12, and -15 were detected in discrete foci that were prominent in the perinuclear region but were widely distributed throughout the cytoplasm as well. Dual-labeling experiments demonstrated colocalization of the majority of p1a-22 in replication complexes with the helicase, nucleocapsid, and 3C-like proteinase, as well as with p1a-10, -12, and -15. p1a-22 was also detected in separate foci adjacent to the replication complexes. The majority of complexes containing the gene 1 proteins were distinct from sites of accumulation of the M assembly protein. However, in perinuclear regions the gene 1 proteins and nucleocapsid were intercalated with sites of M protein localization. These results demonstrate that the complexes known to be involved in RNA synthesis contain multiple gene 1 proteins and are closely associated with structural proteins at presumed sites of virion assembly.  相似文献   

2.
The aim of the present study was to define the site of replication of the coronavirus mouse hepatitis virus (MHV). Antibodies directed against several proteins derived from the gene 1 polyprotein, including the 3C-like protease (3CLpro), the putative polymerase (POL), helicase, and a recently described protein (p22) derived from the C terminus of the open reading frame 1a protein (CT1a), were used to probe MHV-infected cells by indirect immunofluorescence (IF) and electron microscopy (EM). At early times of infection, all of these proteins showed a distinct punctate labeling by IF. Antibodies to the nucleocapsid protein also displayed a punctate labeling that largely colocalized with the replicase proteins. When infected cells were metabolically labeled with 5-bromouridine 5'-triphosphate (BrUTP), the site of viral RNA synthesis was shown by IF to colocalize with CT1a and the 3CLpro. As shown by EM, CT1a localized to LAMP-1 positive late endosomes/lysosomes while POL accumulated predominantly in multilayered structures with the appearance of endocytic carrier vesicles. These latter structures were also labeled to some extent with both anti-CT1a and LAMP-1 antibodies and could be filled with fluid phase endocytic tracers. When EM was used to determine sites of BrUTP incorporation into viral RNA at early times of infection, the viral RNA localized to late endosomal membranes as well. These results demonstrate that MHV replication occurs on late endosomal membranes and that several nonstructural proteins derived from the gene 1 polyprotein may participate in the formation and function of the viral replication complexes.  相似文献   

3.
The replication complexes (RCs) of positive-stranded RNA viruses are intimately associated with cellular membranes. To investigate membrane alterations and to characterize the RC of mouse hepatitis virus (MHV), we performed biochemical and ultrastructural studies using MHV-infected cells. Biochemical fractionation showed that all 10 of the MHV gene 1 polyprotein products examined pelleted with the membrane fraction, consistent with membrane association of the RC. Furthermore, MHV gene 1 products p290, p210, and p150 and the p150 cleavage product membrane protein 1 (MP1, also called p44) were resistant to extraction with Triton X-114, indicating that they are integral membrane proteins. The ultrastructural analysis revealed double-membrane vesicles (DMVs) in the cytoplasm of MHV-infected cells. The DMVs were found either as separate entities or as small clusters of vesicles. To determine whether MHV proteins and viral RNA were associated with the DMVs, we performed immunocytochemistry electron microscopy (IEM). We found that the DMVs were labeled using an antiserum directed against proteins derived from open reading frame 1a of MHV. By electron microscopy in situ hybridization (ISH) using MHV-specific RNA probes, DMVs were highly labeled for both gene 1 and gene 7 sequences. By combined ISH and IEM, positive-stranded RNA and viral proteins localized to the same DMVs. Finally, viral RNA synthesis was detected by labeling with 5-bromouridine 5'-triphosphate. Newly synthesized viral RNA was found to be associated with the DMVs. We conclude from these data that the DMVs carry the MHV RNA replication complex and are the site of MHV RNA synthesis.  相似文献   

4.
5.
6.
Mouse hepatitis virus (MHV) is a 31-kb positive-strand RNA virus that is replicated in the cytoplasm of infected cells by a viral RNA-dependent RNA polymerase, termed the replicase. The replicase is encoded in the 5'-most 22 kb of the genomic RNA, which is translated to produce a polyprotein of >800 kDa. The replicase polyprotein is extensively processed by viral and perhaps cellular proteinases to give rise to a functional replicase complex. To date, two of the MHV replicase-encoded proteinases, papain-like proteinase 1 (PLP1) and the poliovirus 3C-like proteinase (3CLpro), have been shown to process the replicase polyprotein. In this report, we describe the cloning, expression, and activity of the third MHV proteinase domain, PLP2. We show that PLP2 cleaves a substrate encoding the first predicted membrane-spanning domain (MP1) of the replicase polyprotein. Cleavage of MP1 and release of a 150-kDa intermediate, p150, are likely to be important for embedding the replicase complex in cellular membranes. Using an antiserum (anti-D11) directed against the C terminus of the MP1 domain, we verified that p150 encompasses the MP1 domain and identified a 44-kDa protein (p44) as a processed product of p150. Pulse-chase experiments showed that p150 is rapidly generated in MHV-infected cells and that p44 is processed from the p150 precursor. Protease inhibitor studies revealed that unlike 3CLpro activity, PLP2 activity is not sensitive to cysteine protease inhibitor E64d. Furthermore, coexpression studies using the PLP2 domain and a substrate encoding the MP1 cleavage site showed that PLP2 acts efficiently in trans. Site-directed mutagenesis studies confirmed the identification of cysteine 1715 as a catalytic residue of PLP2. This study is the first to report enzymatic activity of the PLP2 domain and to demonstrate that three distinct viral proteinase activities process the MHV replicase polyprotein.  相似文献   

7.
Ng LF  Liu DX 《Journal of virology》2002,76(12):6257-6267
More than 10 mature proteins processed from coronavirus gene 1-encoded polyproteins have been identified in virus-infected cells. Here, we report the identification of the most C-terminal cleavage product of the 1a polyprotein as a 16-kDa protein in infectious bronchitis virus-infected Vero cells. Indirect immunofluorescence demonstrated that the protein exhibits a distinct perinuclear punctate staining pattern, suggesting that it is associated with cellular membranes. Positive staining observed on nonpermeabilized cells indicates that the protein may get transported to the cell surface, but no secretion of the protein out of the cells was observed. Treatment of the membrane fraction prepared from cells expressing the 16-kDa protein with Triton X-100, a high pH, and a high concentration of salts showed that the protein may be tightly associated with intracellular membranes. Dual-labeling experiments demonstrated that the 16-kDa protein colocalized with the 5'-bromouridine 5'-triphosphate-labeled viral RNA, suggesting that it may be associated with the viral replication machinery. Sequence comparison of the 16-kDa protein with the equivalent products of other coronaviruses showed multiple conserved cysteine residues, and site-directed mutagenesis studies revealed that these conserved residues may contribute to dimerization of the 16-kDa protein. Furthermore, increased accumulation of the 16-kDa protein upon stimulation with epidermal growth factor was observed, providing preliminary evidence that the protein might be involved in the growth factor signaling pathway.  相似文献   

8.
Human astroviruses have a positive-strand RNA genome, which contains three open reading frames (ORF1a, ORF1b, and ORF2). The genomic RNA is translated into two nonstructural polyproteins, nsp1a and nsp1ab, that contain sequences derived from ORF1a and from both ORF1a and ORF1b, respectively. Proteins nsp1a and nsp1ab are thought to be proteolytically processed to yield the viral proteins implicated in the replication of the virus genome; however, the intermediate and final products of this processing have been poorly characterized. To identify the cleavage products of the nonstructural polyproteins of a human astrovirus serotype 8 strain, antisera to selected recombinant proteins were produced and were used to analyze the viral proteins synthesized in astrovirus-infected Caco-2 cells and in cells transfected with recombinant plasmids expressing the ORF1a and ORF1b polyproteins. Pulse-chase experiments identified proteins of approximately 145, 88, 85, and 75 kDa as cleavage intermediates during the polyprotein processing. In addition, these experiments and kinetic analysis of the synthesis of the viral proteins identified polypeptides of 57, 20, and 19 kDa, as well as two products of around 27 kDa, as final cleavage products, with the 57-kDa polypeptide most probably being the virus RNA polymerase and the two approximately 27-kDa products being the viral protease. Based on the differential reactivities of the astrovirus proteins with the various antisera used, the individual polypeptides detected were mapped to the virus ORF1a and ORF1b regions.  相似文献   

9.
The positive-stranded RNA genome of the coronaviruses is translated from ORF1 to yield polyproteins that are proteolytically processed into intermediate and mature nonstructural proteins (nsps). Murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) polyproteins incorporate 16 protein domains (nsps), with nsp1 and nsp2 being the most variable among the coronaviruses and having no experimentally confirmed or predicted functions in replication. To determine if nsp2 is essential for viral replication, MHV and SARS-CoV genome RNA was generated with deletions of the nsp2 coding sequence (MHVDeltansp2 and SARSDeltansp2, respectively). Infectious MHVDeltansp2 and SARSDeltansp2 viruses recovered from electroporated cells had 0.5 to 1 log10 reductions in peak titers in single-cycle growth assays, as well as a reduction in viral RNA synthesis that was not specific for any positive-stranded RNA species. The Deltansp2 mutant viruses lacked expression of both nsp2 and an nsp2-nsp3 precursor, but cleaved the engineered chimeric nsp1-nsp3 cleavage site as efficiently as the native nsp1-nsp2 cleavage site. Replication complexes in MHVDeltansp2-infected cells lacked nsp2 but were morphologically indistinguishable from those of wild-type MHV by immunofluorescence. nsp2 expressed in cells by stable retroviral transduction was specifically recruited to viral replication complexes upon infection with MHVDeltansp2. These results demonstrate that while nsp2 of MHV and SARS-CoV is dispensable for viral replication in cell culture, deletion of the nsp2 coding sequence attenuates viral growth and RNA synthesis. These findings also provide a system for the study of determinants of nsp targeting and function.  相似文献   

10.
In vitro replication of mouse hepatitis virus strain A59.   总被引:15,自引:9,他引:6       下载免费PDF全文
An in vitro replication system for mouse hepatitis virus (MHV) strain A59 was developed using lysolecithin to produce cell extracts. In extracts of MHV-infected cells, radiolabeled UMP was incorporated at a linear rate for up to 1 h into RNA, which hybridized to MHV-specific cDNA probes and migrated in denaturing formaldehyde-agarose gels to the same position as MHV genomic RNA. The incorporation of [32P]UMP into genome-sized RNA in vitro correlated with the observed increase of [3H]uridine incorporation in MHV-infected cells labeled in vivo. Incorporation of [32P]UMP into genome-sized RNA was inhibited when extracts were incubated with puromycin. The addition to the assay of antiserum to the MHV-A59 nucleocapsid protein N inhibited synthesis of genome-sized RNA by 90% compared with the addition of preimmune serum. In contrast, antiserum to the E1 or E2 glycoproteins did not significantly inhibit RNA replication. In vitro-synthesized RNA banded in cesium chloride gradients as a ribonucleoprotein complex with the characteristic density of MHV nucleocapsids isolated from virions. These experiments suggest that ongoing protein synthesis is necessary for replication of MHV genomic RNA and indicate that the N protein plays an important role in MHV replication.  相似文献   

11.
12.
Sparks JS  Lu X  Denison MR 《Journal of virology》2007,81(22):12554-12563
Coronavirus replicase polyproteins are translated from the genomic positive-strand RNA and are proteolytically processed by three viral proteases to yield 16 mature nonstructural proteins (nsp1 to nsp16). nsp4 contains four predicted transmembrane-spanning regions (TM1, -2, -3, and -4), demonstrates characteristics of an integral membrane protein, and is thought to be essential for the formation and function of viral replication complexes on cellular membranes. To determine the requirement of nsp4 for murine hepatitis virus (MHV) infection in culture, engineered deletions and mutations in TMs and intervening soluble regions were analyzed for effects on virus recovery, growth, RNA synthesis, protein expression, and intracellular membrane modifications. In-frame partial or complete deletions of nsp4; deletions of TM1, -2, and -3; and alanine substitutions of multiple conserved, clustered, charged residues in nsp4 resulted in viruses that were nonrecoverable, viruses highly impaired in growth and RNA synthesis, and viruses that were nearly wild type in replication. The results indicate that nsp4 is required for MHV replication and that while putative TM1, -2, and -3 and specific charged residues may be essential for productive virus infection, putative TM4 and the carboxy-terminal amino acids K(398) through T(492) of nsp4 are dispensable. Together, the experiments identify important residues and regions for studies of nsp4 topology, function, and interactions.  相似文献   

13.
14.
15.
The initial step in mouse hepatitis virus (MHV) RNA replication is the synthesis of negative-strand RNA from a positive-strand genomic RNA template. Our approach to begin studying MHV RNA replication is to identify the cis-acting signals for RNA synthesis and the proteins which recognize these signals at the 3' end of genomic RNA of MHV. To determine whether host cellular and/or viral proteins interact with the 3' end of the coronavirus genome, an RNase T1 protection/gel mobility shift electrophoresis assay was used to examine cytoplasmic extracts from mock- and MHV-JHM-infected 17Cl-1 murine cells for the ability to form complexes with defined regions of the genomic RNA. We demonstrated the specific binding of host cell proteins to multiple sites within the 3' end of MHV-JHM genomic RNA. By using a set of RNA probes with deletions at either the 5' or 3' end or both ends, two distinct binding sites were located. The first protein-binding element was mapped in the 3'-most 42 nucleotides of the genomic RNA [3' (+42) RNA], and the second element was mapped within an 86-nucleotide sequence encompassing nucleotides 171 to 85 from the 3' end of the genome (171-85 RNA). A single potential stem-loop structure is predicted for the 3' (+)42 RNA, and two stem-loop structures are predicted for the 171-85 RNA. Proteins interacting with these two elements were identified by UV-induced covalent cross-linking to labeled RNAs followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The RNA-protein complex formed with the 3'-most 42 nucleotides contains approximately five host polypeptides, a highly labeled protein of 120 kDa and four minor species with sizes of 103, 81, 70, and 55 kDa. The second protein-binding element, contained within a probe representing nucleotides 487 to 85 from the 3' end of the genome, also appears to bind five host polypeptides, 142, 120, 100, 55, and 33 kDa in size, with the 120-kDa protein being the most abundant. The RNA-protein complexes observed with MHV-infected cells in both RNase protection/gel mobility shift and UV cross-linking assays were identical to those observed with uninfected cells. The possible involvement of the interaction of host proteins with the viral genome during MHV replication is discussed.  相似文献   

16.
Human coronavirus 229E gene expression involves proteolytic processing of the gene 1-encoded polyproteins pp1a and pp1ab. In this study, we have detected a 71-kDa polypeptide in virus-infected cells that is released from pp1ab by the virus-encoded 3C-like proteinase and that has been predicted to contain both metal-binding and helicase domains. The polypeptide encompasses amino acids Ala-4996 to Gln-5592 of pp1ab and exhibits nucleic acid-stimulated ATPase activity when expressed as a fusion protein with the Escherichia coli maltose-binding protein. These data provide the first identification of a coronavirus open reading frame 1b-encoded enzymatic activity.  相似文献   

17.
The coronavirus mouse hepatitis virus (MHV) contains a large open reading frame embedded entirely within the 5' half of its nucleocapsid (N) gene. This internal gene (designated I) is in the +1 reading frame with respect to the N gene, and it encodes a mostly hydrophobic 23-kDa polypeptide. We have found that this protein is expressed in MHV-infected cells and that it is a previously unrecognized structural protein of the virion. To analyze the potential biological importance of the I gene, we disrupted its expression by site-directed mutagenesis using targeted RNA recombination. The start codon for I was replaced by a threonine codon, and a stop codon was introduced at a short interval downstream. Both alterations created silent changes in the N reading frame. In vitro translation studies showed that these mutations completely abolished synthesis of I protein, and immunological analysis of infected cell lysates confirmed this conclusion. The MHV I mutant was viable and grew to high titer. However, the I mutant had a reduced plaque size in comparison with its isogenic wild-type counterpart, suggesting that expression of I confers some minor growth advantage to the virus. The engineered mutations were stable during the course of experimental infection in mice, and the I mutant showed no significant differences from wild type in its ability to replicate in the brains or livers of infected animals. These results demonstrate that I protein is not essential for the replication of MHV either in tissue culture or in its natural host.  相似文献   

18.
Mouse hepatitis virus (MHV) RNA synthesis is mediated by a viral RNA-dependent RNA polymerase (RdRp) on membrane-bound replication complexes in the host cell cytoplasm. However, it is not known how the putative MHV RdRp (Pol) is targeted to and retained on cellular membranes. In this report, we show that a 100-kDa protein was stably detected by an anti-Pol antiserum as a mature product throughout the virus life cycle. Gradient fractionation and biochemical extraction experiments demonstrated that Pol was not an integral membrane protein but was tightly associated with membranes and coimmunoprecipitated with the replicase proteins 3CLpro, p22, and p12. By immunofluorescence confocal microscopy, Pol colocalized with viral proteins at replication complexes, distinct from sites of virion assembly, over the entire course of infection. To determine if Pol associated with cellular membranes in the absence of other viral factors, the pol domain of gene 1 was cloned and expressed in cells as a fusion with green fluorescent protein, termed Gpol. In Gpol-expressing cells that were infected with MHV, but not in mock-infected cells, Gpol relocalized from a diffuse distribution in the cytoplasm to punctate foci that colocalized with markers for replication complexes. Expression of Gpol deletion mutants established that the conserved enzymatic domains of Pol were dispensable for replication complex association, but a 38-amino-acid domain in the RdRp unique region of Pol was required. This study demonstrates that viral or virus-induced factors are necessary for Pol to associate with membranes of replication complexes, and it identifies a defined region of Pol that may mediate its interactions with those factors.  相似文献   

19.
20.
The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11 sites in the 803-kDa gene 1 polyprotein, resulting in maturation of proteinase, polymerase, and helicase proteins. However, most of these cleavage sites have not been experimentally confirmed and the proteins have not been identified in vitro or in virus-infected cells. We used specific antibodies to identify and characterize a 22-kDa protein (p1a-22) expressed from gene 1 in MHV A59-infected DBT cells. Processing of p1a-22 from the polyprotein began immediately after translation, but some processing continued for several hours. Amino-terminal sequencing of p1a-22 purified from MHV-infected cells showed that it was cleaved at a putative 3CLpro cleavage site, Gln_Ser4014 (where the underscore indicates the site of cleavage), that is located between the 3CLpro domain and the end of open reading frame (ORF) 1a. Subclones of this region of gene 1 were used to express polypeptides in vitro that contained one or more 3CLpro cleavage sites, and cleavage of these substrates by recombinant 3CLpro in vitro confirmed that amino-terminal cleavage of p1a-22 occurred at Gln_Ser4014. We demonstrated that the carboxy-terminal cleavage of the p1a-22 protein occurred at Gln_Asn4208, a sequence that had not been predicted as a site for cleavage by MHV 3CLpro. Our results demonstrate the usefulness of recombinant MHV 3CLpro in identifying and confirming cleavage sites within the gene 1 polyprotein. Based on our results, we predict that at least seven mature proteins are processed from the ORF 1a polyprotein by 3CLpro and suggest that additional noncanonical cleavage sites may be used by 3CLpro during processing of the gene 1 polyprotein.Gene 1 of mouse hepatitis virus (MHV) A59 encodes a fusion polyprotein with a predicted mass of 803 kDa (2, 10, 15). Expression of the entire polyprotein of gene 1 requires translation of two overlapping open reading frames (ORFs), 1a and 1b. Since these ORFs are in different reading frames, ORF 1b can be expressed only if a ribosomal frameshift occurs at the end of ORF 1a (4, 5, 21). The ORF 1a portion of gene 1 encodes two experimentally confirmed proteinases, papain-like proteinase 1 (PLP-1) and 3C-like proteinase (3CLpro), as well as an additional proteinase motif, PLP-2, for which no activity has yet been identified (1, 15). The MHV 3CLpro has been shown to autoproteolytically liberate itself from the nascent polyprotein in vitro and in virus-infected cells (in cyto) (18, 19). Eleven cleavage sites have been predicted to be cleaved by 3CLpro, 10 of which have a dipeptide consisting of Gln at position 1 (P1) and Ser, Asp, Gly, or Cys at P1′ (15) (Fig. (Fig.1).1). The putative cleavage sites are conserved among the four sequenced coronaviruses and are generally located within the polyprotein and at the putative Q_(S,A,G) dipeptide cleavage site motif (where the underscore indicates the site of cleavage). Six of the predicted MHV 3CLpro cleavage sites are located in a 1,120-amino-acid (aa) region starting at 3CLpro and ending at the carboxy terminus of the ORF 1a polyprotein (aa 3334 to 4454). This region is comprised of 3CLpro as well as a region of predominantly hydrophobic residues between aa 3636 and 3921 (MP-2), a region of unknown function between aa 3922 and 4317, and the putative growth factor-like domain extending from aa 4318 to 4454 (GFL). We were particularly interested in the 532-aa region from the carboxy terminus of the MP-2 domain to the end of GFL, since there are four predicted 3CLpro cleavage sites within this small area and no functions have been proposed for these domains. Open in a separate windowFIG. 1MHV gene 1 organization and putative 3CLpro cleavage sites. The diagram shows the organization of the 22-kb gene 1 of the MHV 32-kb RNA. The locations of the PLP-1 and PLP-2 domains, the MP-1 and MP-2 hydrophobic domains, 3CLpro, the GFL domain, RNA-dependent RNA polymerase (POL), and helicase (HEL) are shown as shaded boxes. Locations of predicted MHV 3CLpro cleavage sites are numbered below the diagram. KR, Lys-Arg dipeptide also proposed as a 3CLpro cleavage site (15). The dots denote the confirmed cleavage sites flanking 3CLpro in the polyprotein. The ∗ indicates the Q_N4208 cleavage site identified and described in this paper. The sequences surrounding the confirmed or putative MHV 3CLpro cleavage sites (denoted by MHV) are aligned with the deduced amino acid sequences of HCV 229E (229E) (11), IBV (3), and TGEV (9). Alignments were performed with MacVector version 6.01.In this study we used a specific antiserum to identify a 22-kDa protein from MHV A59-infected cells that is processed from the region of the ORF 1a polyprotein between MP-2 and the end of ORF 1a (p1a-22). We have shown that 3CLpro is responsible for cleaving this protein at an amino-terminal Gln_Ser site that was previously predicted to be a cleavage site for the proteinase. We also have identified a new cleavage site at the carboxy terminus of the 22-kDa protein that does not conform to the canonical Gln_(Ser,Ala,Gly) motif. Together these results confirm that 3CLpro is responsible for processing at the carboxy-terminal region of the MHV ORF 1a polyprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号