首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cell division in Escherichia coli starts with assembly of FtsZ protofilaments into a ring-like structure, the Z-ring. Positioning of the Z-ring at midcell is thought to be coordinated by two regulatory systems, nucleoid occlusion and the Min system. In E. coli, nucleoid occlusion is mediated by the SlmA proteins. Here, we address the question of whether there are additional positioning systems that are capable of localizing the E. coli divisome with respect to the cell center. Using quantitative fluorescence imaging we show that slow growing cells lacking functional Min and SlmA nucleoid occlusion systems continue to divide preferentially at midcell. We find that the initial Z-ring assembly occurs over the center of the nucleoid instead of nucleoid-free regions under these conditions. We determine that Z-ring formation begins shortly after the arrival of the Ter macrodomain at the nucleoid center. Removal of either the MatP, ZapB, or ZapA proteins significantly affects the accuracy and precision of Z-ring positioning relative to the nucleoid center in these cells in accordance with the idea that these proteins link the Ter macrodomain and the Z-ring. Interestingly, even in the absence of Min, SlmA, and the putative Ter macrodomain – Z-ring link, there remains a weak midcell positioning bias for the Z-ring. Our work demonstrates that additional Z-ring localization systems are present in E. coli than are known currently. In particular, we identify that the Ter macrodomain acts as a landmark for the Z-ring in the presence of MatP, ZapB and ZapA proteins.  相似文献   

2.
The min system spatially regulates division through the topological regulation of MinCD, an inhibitor of cell division. MinCD was previously shown to inhibit division by preventing assembly of the Z ring (E. Bi and J. Lutkenhaus, J. Bacteriol. 175:1118-1125, 1993); however, this was questioned in a recent report (S. S. Justice, J. Garcia-Lara, and L. I. Rothfield, Mol. Microbiol. 37:410-423, 2000) which indicated that MinCD acted after Z-ring formation and prevented the recruitment of FtsA to the Z ring. This discrepancy was due in part to alternative fixation conditions. We have therefore reinvestigated the action of MinCD and avoided fixation by using green fluorescent protein (GFP) fusions to division proteins. MinCD prevented the localization of both FtsZ-GFP and ZipA-GFP, consistent with it preventing Z-ring assembly. Consistent with a direct interaction between FtsZ and the MinCD inhibitor, we find that increased FtsZ, but not FtsA, suppresses MinCD-induced lethality. Furthermore, strains carrying various alleles of ftsZ, selected on the basis of resistance to the inhibitor SulA, displayed variable resistance to MinCD. These results are consistent with FtsZ as the target of MinCD and confirm that this inhibitor prevents Z-ring assembly.  相似文献   

3.
The dynamics and assembly of bacterial cell division protein FtsZ were monitored in individual, growing and dividing Escherichia coli cells in real time by microculture of a merodiploid strain expressing green fluorescent protein (GFP)-tagged FtsZ. Cells expressing FtsZ-GFP at levels less than or equivalent to that of wild-type FtsZ were able to grow and divide over multiple generations, with their FtsZ rings visualized by fluorescence. During the late stages of cytokinesis, which constituted the last one-fourth of the cell cycle, the lumen of the FtsZ ring disappeared as the whole structure condensed. At this time, loops of FtsZ-GFP polymers emanated outward from the condensing ring structure and other unstable fluorescent structures elsewhere in the cell were also observed. Assembly of FtsZ rings at new division sites occurred within 1 min, from what appeared to be single points. Interestingly, this nucleation often took place in the predivisional cell at the same time the central FtsZ ring was in its final contraction phase. This demonstrates directly that, at least when FtsZ-GFP is being expressed, new division sites have the capacity to become fully functional for FtsZ targeting and assembly before cell division of the mother cell is completed. The results suggest that the timing of FtsZ assembly may be normally controlled in part by cellular FtsZ concentration. The use of wide-field optical sectioning microscopy to obtain sharp fluorescence images of FtsZ structures is also discussed.  相似文献   

4.
The FtsZ protein, a tubulin-like GTPase, plays a pivotal role in prokaryotic cell division. In vivo it localizes to the midcell and assembles into a ring-like structure-the Z-ring. The Z-ring serves as an essential scaffold to recruit all other division proteins and generates contractile force for cytokinesis, but its supramolecular structure remains unknown. Electron microscopy (EM) has been unsuccessful in detecting the Z-ring due to the dense cytoplasm of bacterial cells, and conventional fluorescence light microscopy (FLM) has only provided images with limited spatial resolution (200–300 nm) due to the diffraction of light. Hence, given the small sizes of bacteria cells, identifying the in vivo structure of the Z-ring presents a substantial challenge. Here, we used photoactivated localization microscopy (PALM), a single molecule-based super-resolution imaging technique, to characterize the in vivo structure of the Z-ring in E. coli. We achieved a spatial resolution of ∼35 nm and discovered that in addition to the expected ring-like conformation, the Z-ring of E. coli adopts a novel compressed helical conformation with variable helical length and pitch. We measured the thickness of the Z-ring to be ∼110 nm and the packing density of FtsZ molecules inside the Z-ring to be greater than what is expected for a single-layered flat ribbon configuration. Our results strongly suggest that the Z-ring is composed of a loose bundle of FtsZ protofilaments that randomly overlap with each other in both longitudinal and radial directions of the cell. Our results provide significant insight into the spatial organization of the Z-ring and open the door for further investigations of structure-function relationships and cell cycle-dependent regulation of the Z-ring.  相似文献   

5.
The earliest stage in cell division in bacteria is the assembly of a Z ring at the division site at midcell. Other division proteins are also recruited to this site to orchestrate the septation process. FtsA is a cytosolic division protein that interacts directly with FtsZ. Its function remains unknown. It is generally believed that FtsA localization to the division site occurs immediately after Z-ring formation or concomitantly with it and that FtsA is responsible for recruiting the later-assembling membrane-bound division proteins to the division site. Here, we report the development of an in vivo chemical cross-linking assay to examine the association between FtsZ and FtsA in Bacillus subtilis cells. We subsequently use this assay in a synchronous cell cycle to show that these two proteins can interact prior to Z-ring formation. We further show that in a B. subtilis strain containing an ftsA deletion, FtsZ localized at regular intervals along the filament but the majority of Z rings were abnormal. FtsA in this organism is therefore critical for the efficient formation of functional Z rings. This is the first report of abnormal Z-ring formation resulting from the loss of a single septation protein. These results suggest that in this organism, and perhaps others, FtsA ensures recruitment of the membrane-bound division proteins by ensuring correct formation of the Z ring.  相似文献   

6.
In Escherichia coli, cytokinesis is orchestrated by FtsZ, which forms a Z-ring to drive septation. Spatial and temporal control of Z-ring formation is achieved by the Min and nucleoid occlusion (NO) systems. Unlike the well-studied Min system, less is known about the anti-DNA guillotining NO process. Here, we describe studies addressing the molecular mechanism of SlmA (synthetic lethal with a defective Min system)-mediated NO. SlmA contains a TetR-like DNA-binding fold, and chromatin immunoprecipitation analyses show that SlmA-binding sites are dispersed on the chromosome except the Ter region, which segregates immediately before septation. SlmA binds DNA and FtsZ simultaneously, and the SlmA-FtsZ structure reveals that two FtsZ molecules sandwich a SlmA dimer. In this complex, FtsZ can still bind GTP and form protofilaments, but the separated protofilaments are forced into an anti-parallel arrangement. This suggests that SlmA may alter FtsZ polymer assembly. Indeed, electron microscopy data, showing that SlmA-DNA disrupts the formation of normal FtsZ polymers and induces distinct spiral structures, supports this. Thus, the combined data reveal how SlmA derails Z-ring formation at the correct place and time to effect NO.  相似文献   

7.
Bacterial cell division requires the coordinated assembly of more than ten essential proteins at midcell1,2. Central to this process is the formation of a ring-like suprastructure (Z-ring) by the FtsZ protein at the division plan3,4. The Z-ring consists of multiple single-stranded FtsZ protofilaments, and understanding the arrangement of the protofilaments inside the Z-ring will provide insight into the mechanism of Z-ring assembly and its function as a force generator5,6. This information has remained elusive due to current limitations in conventional fluorescence microscopy and electron microscopy. Conventional fluorescence microscopy is unable to provide a high-resolution image of the Z-ring due to the diffraction limit of light (~200 nm). Electron cryotomographic imaging has detected scattered FtsZ protofilaments in small C. crescentus cells7, but is difficult to apply to larger cells such as E. coli or B. subtilis. Here we describe the application of a super-resolution fluorescence microscopy method, Photoactivated Localization Microscopy (PALM), to quantitatively characterize the structural organization of the E. coli Z-ring8.PALM imaging offers both high spatial resolution (~35 nm) and specific labeling to enable unambiguous identification of target proteins. We labeled FtsZ with the photoactivatable fluorescent protein mEos2, which switches from green fluorescence (excitation = 488 nm) to red fluorescence (excitation = 561 nm) upon activation at 405 nm9. During a PALM experiment, single FtsZ-mEos2 molecules are stochastically activated and the corresponding centroid positions of the single molecules are determined with <20 nm precision. A super-resolution image of the Z-ring is then reconstructed by superimposing the centroid positions of all detected FtsZ-mEos2 molecules.Using this method, we found that the Z-ring has a fixed width of ~100 nm and is composed of a loose bundle of FtsZ protofilaments that overlap with each other in three dimensions. These data provide a springboard for further investigations of the cell cycle dependent changes of the Z-ring10 and can be applied to other proteins of interest.  相似文献   

8.
Jaiswal R  Beuria TK  Mohan R  Mahajan SK  Panda D 《Biochemistry》2007,46(14):4211-4220
Totarol, a diterpenoid phenol, has been shown to inhibit the proliferation of several pathogenic Gram-positive bacteria including Mycobacterium tuberculosis. In this study, totarol was found to inhibit the proliferation of Bacillus subtilis cells with a minimum inhibitory concentration of 2 microM. It did not detectably perturb the membrane structure of B. subtilis; it strongly induced the filamentation in B. subtilis cells, suggesting that it inhibits bacterial cytokinesis. Totarol (1.5 microM) reduced the frequency of the Z-ring occurrence per micrometer of the bacterial cell length but did not affect the nucleoid frequency, suggesting that it blocks cytokinesis by inhibiting the formation of the Z-ring. The assembly dynamics of FtsZ is thought to play an important role in the formation and functioning of the Z-ring, a machine that engineers cytokinesis in bacteria. Since totarol was shown to inhibit the proliferation of M. tuberculosis, we examined the effects of totarol on the assembly dynamics of M. tuberculosis FtsZ (MtbFtsZ) in vitro. Totarol decreased the assembly of MtbFtsZ protofilaments and potently suppressed the GTPase activity of MtbFtsZ. It bound to MtbFtsZ with a dissociation constant of 11 +/- 2.3 microM. It increased the fluorescence intensity of the MtbFtsZ-1-anilinonaphthalene-8-sulfonic acid complex and inhibited the fluorescence intensity of N-(1-pyrene)maleimide-labeled MtbFtsZ, suggesting that totarol induces conformational changes in MtbFtsZ. The results indicated that totarol can perturb the assembly dynamics of FtsZ protofilaments in the Z-ring. Totarol exhibited extremely weak inhibitory effects on HeLa cell proliferation. It did not affect microtubule organization in HeLa cells. The results suggest that totarol inhibits bacterial proliferation by targeting FtsZ and it may be useful as a lead compound to develop an effective antitubercular drug.  相似文献   

9.
Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles. In the cell, it has been suggested that FtsZ filaments form the arcs of the ring and are aligned in the cell-circumferential direction. Using polarized fluorescence microscopy in live Escherichia coli cells, we measure the structural organization of FtsZ filaments in the Z-ring. The data suggest a disordered organization: a substantial portion of FtsZ filaments are aligned in the cell-axis direction. FtsZ organization in the Z-ring also appears to depend on the bacterial species. Taken together, the unique arrangement of FtsZ suggests novel unexplored mechanisms in bacterial cell division.  相似文献   

10.
11.
Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles. In the cell, it has been suggested that FtsZ filaments form the arcs of the ring and are aligned in the cell-circumferential direction. Using polarized fluorescence microscopy in live Escherichia coli cells, we measure the structural organization of FtsZ filaments in the Z-ring. The data suggest a disordered organization: a substantial portion of FtsZ filaments are aligned in the cell-axis direction. FtsZ organization in the Z-ring also appears to depend on the bacterial species. Taken together, the unique arrangement of FtsZ suggests novel unexplored mechanisms in bacterial cell division.  相似文献   

12.
Streptomyces coelicolor A3(2) undergoes at least two kinds of cell division: vegetative septation leading to cross-walls in the substrate mycelium; and developmentally regulated sporulation septation in aerial hyphae. By isolation and characterization of a non-sporulating ftsZ mutant, we demonstrate a difference between the two types of septation. The ftsZ17(Spo) allele gave rise to a classical white phenotype. The mutant grew as well as the parent on plates, and formed apparently normal hyphal cross-walls, although with a small reduction in frequency. In contrast, sporulation septation was almost completely abolished, resulting in a phenotype reminiscent of whiH and ftsZdelta2p mutants. The ftsZ17(Spo) allele was partially dominant and had no detectable effect on the cellular FtsZ content. As judged from both immunofluorescence microscopy of FtsZ and translational fusion of ftsZ to egfp, the mutation prevented correct temporal and spatial assembly of Z rings in sporulating hyphae. Homology modelling of S. coelicolor FtsZ indicated that the mutation, an A249T change in the C-terminal domain, would be expected to alter the protein on the lateral face of FtsZ protofilaments. The results suggest that cytokinesis may be developmentally controlled at the level of Z-ring assembly during sporulation of S. coelicolor A3(2).  相似文献   

13.
The contractile cycle of the cardiac myocyte is essentially controlled by the concentration of intracellular calcium ([Ca2+]i). Measurement of [Ca2+]i using Ca2+-dependent fluorescence and simultaneous monitoring of cell dynamics enable characterization of a variety of substances interacting with ion channels and contractile proteins. In this report we describe a novel method featuring up to 480 frames/s for monitoring rapid changes in cellular calcium and cell length, in which every individual cycle allows effective evaluation of major cell parameters. Computers aid in determination of time to peak (in ms), time to 50% decrease (ms), diastolic Ca2+ (relative fluorescence units, rfu), systolic Ca2+ (rfu), Ca2+ transients (rfu), DeltaCa2+/Delta(t) rise (rfu/s), and DeltaCa2+/Delta(t) fall (rfu/s). Contractile parameters are as follows: maximum cell length (microm), minimum cell length (microm), absolute cell shortening (microm), peak DeltaL/Delta(t) shortening (microm/s), and peak DeltaL/Delta(t) relaxation (microm/s). In summary, we succeeded in demonstrating that this system is a unique and valuable tool that allows simultaneous and accurate assessment of contractile parameters and of calcium movements of isolated adult cardiac myocytes.  相似文献   

14.
15.
With the emergence of multidrug-resistant bacterial strains, there is a dire need for new drug targets for antibacterial drug discovery and development. Filamentous temperature sensitive protein Z (FtsZ), is a GTP-dependent prokaryotic cell division protein, sharing less than 10% sequence identity with the eukaryotic cell division protein, tubulin. FtsZ forms a dynamic Z-ring in the middle of the cell, leading to septation and subsequent cell division. Inhibition of the Z-ring blocks cell division, thus making FtsZ a highly attractive target. Various groups have been working on natural products and synthetic small molecules as inhibitors of FtsZ. This review summarizes the recent advances in the development of FtsZ inhibitors, focusing on those in the last 5 years, but also includes significant findings in previous years.  相似文献   

16.
Growth of the bacterial cell involves proteins that assemble into dynamic localized structures that are required for cellular morphogenesis and division. During the past year, the continued application of fluorescence microscopy has led to the discovery of novel actin-like filaments involved in cell shape and plasmid DNA segregation, and to new insights into the regulation and dynamics of the Z-ring. Studies on the Min proteins, which rapidly oscillate between the cell poles to spatially regulate Z-ring assembly, has led to a biochemical basis for the oscillation and a suggestion that MinD assembles into dynamic filaments. These studies further demonstrate that the eukaryotic cytoskeleton had its origins in bacteria.  相似文献   

17.
FtsZ, a bacterial homolog of tubulin, forms a structural element called the FtsZ ring (Z ring) at the predivisional midcell site and sets up a scaffold for the assembly of other cell division proteins. The genetic aspects of FtsZ-catalyzed cell division and its assembly dynamics in Mycobacterium tuberculosis are unknown. Here, with an M. tuberculosis strain containing FtsZ(TB) tagged with green fluorescent protein as the sole source of FtsZ, we examined FtsZ structures under various growth conditions. We found that midcell Z rings are present in approximately 11% of actively growing cells, suggesting that the low frequency of Z rings is reflective of their slow growth rate. Next, we showed that SRI-3072, a reported FtsZ(TB) inhibitor, disrupted Z-ring assembly and inhibited cell division and growth of M. tuberculosis. We also showed that M. tuberculosis cells grown in macrophages are filamentous and that only a small fraction had midcell Z rings. The majority of filamentous cells contained nonring, spiral-like FtsZ structures along their entire length. The levels of FtsZ in bacteria grown in macrophages or in broth were comparable, suggesting that Z-ring formation at midcell sites was compromised during intracellular growth. Our results suggest that the intraphagosomal milieu alters the expression of M. tuberculosis genes affecting Z-ring formation and thereby cell division.  相似文献   

18.
Cell division in nearly all bacteria is initiated by polymerization of the conserved tubulin-like protein FtsZ into a ring-like structure at midcell. This Z-ring functions as a scaffold for a group of conserved proteins that execute the synthesis of the division septum (the divisome). Here we describe the identification of a new cell division protein in Bacillus subtilis. This protein is conserved in Gram positive bacteria, and because it has a role in septum development, we termed it SepF. sepF mutants are viable but have a cell division defect, in which septa are formed slowly and with a severely abnormal morphology. Yeast two-hybrid analysis showed that SepF can interact with itself and with FtsZ. Accordingly, fluorescence microscopy showed that SepF accumulates at the site of cell division, and this localization depends on the presence of FtsZ. Combination of mutations in sepF and ezrA, encoding another Z-ring interacting protein, had a synthetic lethal division effect. We conclude that SepF is a new member of the Gram positive divisome, required for proper execution of septum synthesis.  相似文献   

19.
Bacterial cell division begins with the formation of the Z-ring via polymerization of FtsZ and the localization of Z-ring beneath the inner membrane through membrane anchors. In Mycobacterium tuberculosis (Mtb), SepF is one such membrane anchor, but our understanding of the underlying mechanism is very limited. Here we used molecular dynamics simulations to characterize how SepF itself, a water-soluble protein, tethers to acidic membranes that mimic the Mtb inner membrane. In addition to an amphipathic helix (residues 1–12) at the N-terminus, membrane binding also occurs through two stretches of positively charged residues (Arg27-Arg37 and Arg95-Arg107) in the long linker preceding the FtsZ-binding core domain (residues 128–218). The additional interactions via the disordered linker stabilize the membrane tethering of SepF, and keep the core domain of SepF and hence the attached Z-ring close to the membrane. The resulting membrane proximity of the Z-ring in turn enables its interactions with and thus recruitment of two membrane proteins, FtsW and CrgA, at the late stage of cell division.  相似文献   

20.
Heterogeneous distribution of specific phospholipids along the bacterial membrane results in the formation of domains enriched in anionic phospholipids at the cell poles and cell center, which appear to participate in the binding of amphitropic proteins responsible for selection and recognition of the division site. It was discovered that functioning of the Min system, which protects the cell poles from aberrant positioning of the Z-ring, is controlled by direct interaction of its MinD component with membrane phospholipids. There is also an accumulation of evidence that the mid-cell domain, formed in the cell at a defined step of the cell cycle, provides the optimal phospholipid composition first for initiation of DNA replication and then for Z-ring positioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号