首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ooencyrtus nezarae (Hymenoptera: Encyrtidae) is an egg parasitoid of bean bug Riptortus pedestris (Hemiptera: Alydidae) which is a major pest of beans. Females of O. nezarae are attracted to (E)‐2‐hexenyl (Z)‐3‐hexenoate (EZ), one of the components of aggregation pheromone of Rpedestris. Effects of three isomers (ZE, EE and ZZ) of EZ on the attractiveness of O. nezarae were tested using electroantennography (EAG) and field bioassays. EAG analyses revealed that the response of O. nezarae to ZE was significantly higher than those to air, hexane and two other isomers, even though the response was lower than that to EZ. ZE affected the attractiveness of EZ dose‐dependently in the field. Addition of ZE (100 mg) to EZ (10 mg) caused a significant reduction in the catches of O. nezarae females. Single or binary addition of two other isomers (EE and ZZ) to EZ could not decrease or increase significantly the number of O. nezarae catches of EZ. Even though addition of ZZ (10, 50 or 100 mg) to EZ (10 mg) caused dose‐dependent reduction in the number of O. nezarae female catches, the reductions were not significantly different from that of EZ. EZ and its three isomers were not attractive to O. nezarae males at all.  相似文献   

2.
Dabry's sturgeon (Acipenser dabryanus) represents an ancient Actinopterygian lineage that are termed “living fossils”. Many diseases have been found in Dabry's sturgeon. In the present study, genes encoding interleukin (IL)‐16 and IL‐17D in Dabry's sturgeon were identified by RNA‐sequencing. Phylogenetic tree analysis suggested that they clustered together with the corresponding pro‐IL‐16 proteins and IL‐17D proteins from other fish. Sequence analysis revealed that IL‐17D protein was more conserved than pro‐IL‐16. Dabry's sturgeon pro‐IL‐16 contains four putative PDZ domains and do not include signal peptides, while IL‐17D only possesses signal peptides (1–25 aa). The expression patterns of IL‐16 and IL‐17D genes were investigated in Dabry's sturgeon to reveal their functions in disease. The expression level of IL‐16 showed no significant changes in embryos; however, the high expression level of IL‐17D at 0–14 hpf (hours post fertilization) implied the existence of maternal expression in the oocyte and an association with embryonic development. Tissue distribution analysis revealed that IL‐16 and IL‐17D proteins have potential functions in immune and non‐immune tissue compartments. IL‐16 and IL‐17D had different fold changes in primary spleen leukocytes after polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharide (LPS) administration, which suggested that IL‐16 has a stronger antiviral capability compared with its antibacterial response, and IL‐17D has a stronger antibacterial capability compared with its antiviral response. IL‐16 showed an earlier response to virus compared with IL‐17D, and IL‐17D showed earlier and shorter response to bacteria compared with IL‐16. Our findings suggested the roles of IL‐16 and IL‐17D in Dabry's sturgeon, and provided the theoretical basis for the prevention and control of diseases of Dabry's sturgeon.  相似文献   

3.
4.
5.
6.
7.
8.
June 4-6, 2010, Wuhan, China Call for PapersThe 8th International Bioinformatics Workshop (IBW2010) will be held from June 4th to 6th, 2010 in Wuhan University, Wuhan, China. The workshop is organized by Wuhan University,  相似文献   

9.
Here we report the synthesis and structural, morphological, and photoluminescence analysis of white‐ and blue‐light‐emitting Dy3+‐ and Tm3+‐doped Gd2Ti2O7 nanophosphors. Single‐phase cubic Gd2Ti2O7 nanopowders consist of compact, dense aggregates of nanoparticles with an average size of ~25 nm for Dy3+‐doped and ~50 nm for Tm3+‐doped samples. The photoluminescence results indicated that ultraviolet (UV) light excitation of the Dy3+‐doped sample resulted in direct generation of white light, while a dominant yellow emission was obtained under blue‐light excitation. Intense blue light was obtained for Tm3+‐doped Gd2Ti2O7 under UV excitation suggesting that this material could be used as a blue phosphor.  相似文献   

10.
The optically active mixed‐ligand fac(S)‐tris(thiolato)rhodium(III) complexes, ΔLfac(S)‐[Rh(aet)2(L‐cys‐N,S)]? (aet = 2‐aminoethanethiolate, L‐cys = L‐cysteinate) ( 1 ) and ΔLLfac(S)‐[Rh(aet)(L‐cys‐N,S)2]2? were newly prepared by the equatorial preference of the carboxyl group in the coordinated L‐cys ligand. The amide formation reaction of 1 with 1,10‐diaminodecane and polyallylamine gave the diamine‐bridged dinuclear Rh(III) complex and the single‐chain polymer‐supported Rh(III) complex with retention of the ΔL configuration of 1 , respectively. These Rh(III) complexes reacted with Co(III) or Co(II) to give the linear‐type trinuclear structure with the S‐bridged Co(III) center and the two Δ‐Rh(III) terminal moieties. The polymer‐supported Rh(III) complex was applied not only to the CD spectropolarimetric detection and determination of a trace of precious metal ions such as Au(III), Pt(II), and Pd(II) but also to concentration and extraction of these metal ions into the solid polymer phase. Chirality 28:85–91, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
12.
13.
14.
Prof. Hong-Yuan Yang,a renowned botanist,Academician of the Chinese Academy of Sciences and Professor of Wuhan University,passed away at the age of 77 in Wuhan on November 18,2010.  相似文献   

15.
16.
Both C?C‐bond isomers of cyclohexadec‐7‐enone ( 6 , Aurelione®) were selectively synthesized via cyclohexadec‐7‐ynol ( 16 ) by ring‐closing alkyne metathesis of icosa‐2,18‐diyn‐9‐ol ( 15 ), employing an in situ‐formed catalyst from Mo(CO)6 and 4‐(trifluoromethyl)phenol. Pyridinium chlorochromate (PCC) oxidation and subsequent Lindlar hydrogenation afforded the (7Z)‐configured isomer (7Z)‐ 6 , while hydrosilylation of the intermediate cyclohexadec‐7‐ynone ( 17 ), followed by desilylation, provided the (7E)‐configured cyclohexadec‐7‐enone ((7E)‐ 6 ). The substrate for the alkyne metathesis was prepared from cycloheptanone ( 7 ) by cycloaddition of chloromethylcarbene to its trimethylsilyl enol ether 8 , and subsequent ring enlargement of the adduct 9 under rearrangement to 2‐methylcyclooct‐2‐enone ( 10 ), which was subjected to Weitz? Scheffer epoxidation and Eschenmoser? Ohloff fragmentation to non‐7‐ynal ( 12 ). Its reaction with the Grignard reagent of 11‐bromoundec‐2‐yne ( 14 ), prepared from the corresponding alcohol 13 by Appel? Lee bromination, furnished the icosa‐2,18‐diyn‐9‐ol ( 15 ). While both isomers of cyclohexadec‐7‐enone ( 6 ) possess warm and powdery musk odors with tobacco‐type ambery accents, (7Z)‐ 6 is more animalic and waxy, whereas (7E)‐ 6 was found to be more floral, sweet, and hay‐like in tonality. Interestingly, however, with odor detection thresholds of 2.0 ng/l air and 2.3 ng/l air, respectively, both (7Z)‐ 6 and (7E)‐ 6 were found to be almost identical in their odor strength, with the (7Z)‐ 6 being only very slightly more powerful.  相似文献   

17.
Microbial activities and the versatility gained through adaptation to xenobiotic compounds are the main biological forces to counteract environmental pollution. The current results present a new adaptive mechanism that is mediated through posttranslational modifications. Strains of Delftia acidovorans incapable of growing autochthonously on 2,4‐dichlorophenoxyacetate (2,4‐D) were cultivated in a chemostat on 2,4‐D in the presence of (R)‐2‐(2,4‐dichlorophenoxy)propionate. Long‐term cultivation led to enhanced 2,4‐D degradation, as demonstrated by improved values of the Michaelis–Menten constant Km for 2,4‐D and the catalytic efficiency kcat/Km of the initial degradative key enzyme (R)‐2‐(2,4‐dichlorophenoxy)propionate/α‐ketoglutarate‐dependent dioxygenases (RdpA). Analyses of the rdpA gene did not reveal any mutations, indicating a nongenetic mechanism of adaptation. 2‐DE of enzyme preparations, however, showed a series of RdpA forms varying in their pI. During adaptation increased numbers of RdpA variants were observed. Subsequent immunoassays of the RdpA variants showed a specific reaction with 2,4‐dinitrophenylhydrazine (DNPH), characteristic of carbonylation modifications. Together these results indicate that posttranslational carbonylation modified the substrate specificity of RdpA. A model was implemented explaining the segregation of clones with improved degradative activity within the chemostat. The process described is capable of quickly responding to environmental conditions by reversibly adapting the degradative potential to various phenoxyalkanoate herbicides.  相似文献   

18.
The ecological importance of Fe(II)‐oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O2 where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ~5) located in northern Bavaria, Germany. Mean O2 penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid‐tolerant FeOB cultivated in gradient tubes were most abundant (106 cells g?1 peat) at the 10–20 cm depth interval. A stable enrichment culture was active at up to 29% O2 saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid‐tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD‐1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale‐goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid‐tolerant population of FeOB is thriving at redox interfaces formed by diffusion‐limited O2 transport in acidic peatlands. Furthermore, this well‐adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle.  相似文献   

19.
Protein N‐terminal profiling is crucial when characterizing biological functions and provides proteomic evidences for genome reannotations. However, most of the current N‐terminal enrichment approaches involve multiple chemical derivatizations and chromatographic separation processes which are time consuming and can contribute to N‐terminal peptide losses. In this study, a fast, one‐step approach utilizing (N‐Succinimidyloxycarbonylmethyl)tris(2,4,6‐trimethoxyphenyl)phosphonium bromide (TMPP) derivatization and StageTip separation was developed to enhance N‐terminal peptide enrichment and analysis. Based on the characteristics of TMPP‐derivatized samples, such as a higher hydrophobicity and increased likelihood to produce a and b ions in collision‐induced dissociation or HCD fragmentation modes, first the SDS‐PAGE was optimized to increase protein loading and gel entry and to remove unbound TMPP. Then, this process was combined with a simplified StageTip separation and a new scoring criterion (considering a, b and y ions) to identify more TMPP‐modified N‐terminal spectra. When utilizing a low amount of starting material (~20 μg protein), a total of 581 yeast N‐terminal peptides were identified, with 485 of them being TMPP modified, in only about one third of the general experimental time. It is hoped that the workflow constructed herein will provide a fast and practical strategy for N‐terminomic studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号