首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the factors that control the extent of tissue damage as a result of material failure in soft tissues may provide means to improve diagnosis and treatment of soft tissue injuries. The objective of this research was to develop and test a computational framework for the study of the failure of anisotropic soft tissues subjected to finite deformation. An anisotropic constitutive model incorporating strain-based failure criteria was implemented in an existing computational solid mechanics software based on the material point method (MPM), a quasi-meshless particle method for simulations in computational mechanics. The constitutive model and the strain-based failure formulations were tested using simulations of simple shear and tensile mechanical tests. The model was then applied to investigate a scenario of a penetrating injury: a low-speed projectile was released through a myocardial material slab. Sensitivity studies were performed to establish the necessary grid resolution and time-step size. Results of the simple shear and tensile test simulations demonstrated the correct implementation of the constitutive model and the influence of both fiber family and matrix failure on predictions of overall tissue failure. The slab penetration simulations produced physically realistic wound tracts, exhibiting diameter increase from entrance to exit. Simulations examining the effect of bullet initial velocity showed that the anisotropy influenced the shape and size of the exit wound more at lower velocities. Furthermore, the size and taper of the wound cavity was smaller for the higher bullet velocity. It was concluded that these effects were due to the amount of momentum transfer. The results demonstrate the feasibility of using MPM and the associated failure model for large-scale numerical simulations of soft tissue failure.  相似文献   

2.
The stiffness, anisotropy, and heterogeneity of freshly dissected (control) and perfusion-decellularized rat right ventricles were compared using an anisotropic inverse mechanics method. Cruciform tissue samples were speckled and then tested under a series of different biaxial loading configurations with simultaneous force measurement on all four arms and displacement mapping via image correlation. Based on the displacement and force data, the sample was segmented into piecewise homogeneous partitions. Tissue stiffness and anisotropy were characterized for each partition using a large-deformation extension of the general linear elastic model. The perfusion-decellularized tissue had significantly higher stiffness than the control, suggesting that the cellular contribution to stiffness, at least under the conditions used, was relatively small. Neither anisotropy nor heterogeneity (measured by the partition standard deviation of the modulus and anisotropy) varied significantly between control and decellularized samples. We thus conclude that although decellularization produces quantitative differences in modulus, decellularized tissue can provide a useful model of the native tissue extracellular matrix. Further, the large-deformation inverse method presented herein can be used to characterize complex soft tissue behaviors.  相似文献   

3.
This paper considers an anisotropic hyperelastic soft tissue model, originally proposed for native valve tissue and referred to herein as the Lee–Sacks model, in an isogeometric thin shell analysis framework that can be readily combined with immersogeometric fluid–structure interaction (FSI) analysis for high-fidelity simulations of bioprosthetic heart valves (BHVs) interacting with blood flow. We find that the Lee–Sacks model is well-suited to reproduce the anisotropic stress–strain behavior of the cross-linked bovine pericardial tissues that are commonly used in BHVs. An automated procedure for parameter selection leads to an instance of the Lee–Sacks model that matches biaxial stress–strain data from the literature more closely, over a wider range of strains, than other soft tissue models. The relative simplicity of the Lee–Sacks model is attractive for computationally-demanding applications such as FSI analysis and we use the model to demonstrate how the presence and direction of material anisotropy affect the FSI dynamics of BHV leaflets.  相似文献   

4.
《Journal of biomechanics》2014,47(13):3272-3278
Finite element (FE) models of bone derived from quantitative computed tomography (QCT) rely on realistic material properties to accurately predict bone strength. QCT cannot resolve bone microarchitecture, therefore QCT-based FE models lack the anisotropy apparent within the underlying bone tissue. This study proposes a method for mapping femoral anisotropy using high-resolution peripheral quantitative computed tomography (HR-pQCT) scans of human cadaver specimens. Femur HR-pQCT images were sub-divided into numerous overlapping cubic sub-volumes and the local anisotropy was quantified using a ‘direct-mechanics’ method. The resulting directionality reflected all the major stress lines visible within the trabecular lattice, and provided a realistic estimate of the alignment of Harvesian systems within the cortical compartment. QCT-based FE models of the proximal femur were constructed with isotropic and anisotropic material properties, with directionality interpolated from the map of anisotropy. Models were loaded in a sideways fall configuration and the resulting whole bone stiffness was compared to experimental stiffness and ultimate strength. Anisotropic models were consistently less stiff, but no statistically significant differences in correlation were observed between material models against experimental data. The mean difference in whole bone stiffness between model types was approximately 26%, suggesting that anisotropy can still effect considerable change in the mechanics of proximal femur models. The under prediction of whole bone stiffness in anisotropic models suggests that the orthotropic elastic constants require further investigation. The ability to map mechanical anisotropy from high-resolution images and interpolate information into clinical-resolution models will allow testing of new anisotropic material mapping strategies.  相似文献   

5.
Trabecular bone is composed of organized mineralized collagen fibrils, which results in heterogeneous and anisotropic mechanical properties at the tissue level. Recently, biomechanical models computing stresses and strains in trabecular bone have indicated a significant effect of tissue heterogeneity on predicted stresses and strains. However, the effect of the tissue-level mechanical anisotropy on the trabecular bone biomechanical response is unknown. Here, a computational method was established to automatically impose physiologically relevant orientation inherent in trabecular bone tissue on a trabecular bone microscale finite element model. Spatially varying tissue-level anisotropic elastic properties were then applied according to the bone mineral density and the local tissue orientation. The model was used to test the hypothesis that anisotropy in both homogeneous and heterogeneous models alters the predicted distribution of stress invariants. Linear elastic finite element computations were performed on a 3 mm cube model isolated from a microcomputed tomography scan of human trabecular bone from the distal femur. Hydrostatic stress and von Mises equivalent stress were recorded at every element, and the distributions of these values were analyzed. Anisotropy reduced the range of hydrostatic stress in both tension and compression more strongly than the associated increase in von Mises equivalent stress. The effect of anisotropy was independent of the spatial redistribution high compressive stresses due to tissue elastic heterogeneity. Tissue anisotropy and heterogeneity are likely important mechanisms to protect bone from failure and should be included for stress analyses in trabecular bone.  相似文献   

6.
Abstract

Prestretch is observed in many soft biological tissues, directly influencing the mechanical behavior of the tissue in question. The development of this prestretch occurs through complex growth and remodeling phenomena, which yet remain to be elucidated. In the present study it was investigated whether local cell-mediated traction forces can explain the development of global anisotropic tissue prestretch in the mitral valve. Towards this end, a model predicting actin stress fiber-generated traction forces was implemented in a finite element framework of the mitral valve. The overall predicted magnitude of prestretch induced valvular contraction after release of in vivo boundary constraints was in good agreement with data reported on valvular retraction after excision from the heart. Next, by using a systematic variation of model parameters and structural properties, a more anisotropic prestretch development in the valve could be obtained, which was also similar to physiological values. In conclusion, this study shows that cell-generated traction forces could explain prestretch magnitude and anisotropy in the mitral valve.  相似文献   

7.
Quantification of the mechanical behavior of soft tissues is challenging due to their anisotropic, heterogeneous, and nonlinear nature. We present a method for the ‘computational dissection’ of a tissue, by which we mean the use of computational tools both to identify and to analyze regions within a tissue sample that have different mechanical properties. The approach employs an inverse technique applied to a series of planar biaxial experimental protocols. The aggregated data from multiple protocols provide the basis for (1) segmentation of the tissue into regions of similar properties, (2) linear analysis for the small-strain behavior, assuming uniform, linear, anisotropic behavior within each region, (3) subsequent nonlinear analysis following each individual experimental protocol path and using local linear properties, and (4) construction of a strain energy data set W(E) at every point in the material by integrating the differential stress–strain functions along each strain path. The approach has been applied to simulated data and captures not only the general nonlinear behavior but also the regional differences introduced into the simulated tissue sample.  相似文献   

8.
This article is focused on the role of anisotropic elasticity in the simulation of the load distribution in a human mandible, due to a lateral bite on the leftmost premolar. Based on experimental evidence, orthotropy of the elastic properties of the bone tissue has been adopted. The trajectories of anisotropic elasticity are reconstructed from (i) the organ's geometry and (ii) from coherent structures which can be recognized from the spatial distribution of the grey values coming from computer tomography (CT). A sensitivity analysis comprising various three-dimensional (3D) finite element (FE) simulations reveals the relevance of elastic anisotropy for the load carrying behavior of a human mandible: comparison of the load distributions in isotropic and anisotropic simulations indicates that anisotropy seems to "spare" the mandible from loading. Moreover, a maximum degree of anisotropy leads to kind of load minimization of the mandible, expressed by a minimum of different norms of local volumetric strain, evaluated throughout the organ. The observed optimization with respect to volumetric rather than shear strain seems to confirm the frequently emphazised role of volumetric-strain-induced fluid flow for the stimulation of cellular activity.  相似文献   

9.
Molecular transport in avascular collagenous tissues such as articular cartilage occurs primarily via diffusion. The presence of ordered structures in the extracellular matrix may influence the local transport of macromolecules, leading to anisotropic diffusion depending on the relative size of the molecule and that of extracellular matrix structures. Here we present what we believe is a novel photobleaching technique for measuring the anisotropic diffusivity of macromolecules in collagenous tissues. We hypothesized that macromolecular diffusion is anisotropic in collagenous tissues, depending on molecular size and the local organization of the collagen structure. A theoretical model and experimental protocol for fluorescence imaging of continuous point photobleaching was developed to measure diffusional anisotropy. Significant anisotropy was observed in highly ordered collagenous tissues such as ligament, with diffusivity ratios >2 along the fiber direction compared to the perpendicular direction. In less-ordered tissues such as articular cartilage, diffusional anisotropy was dependent on site in the tissue and size of the diffusing molecule. Anisotropic diffusion was also dependent on the size of the diffusing molecule, with greatest anisotropy observed for larger molecules. These findings suggest that diffusional transport of macromolecules is anisotropic in collagenous tissues, with higher rates of diffusion along primary orientation of collagen fibers.  相似文献   

10.
Heart valve tissue engineering offers a promising alternative for current treatment and replacement strategies, e.g., synthetic or bioprosthetic heart valves. In vitro mechanical conditioning is an important tool for engineering strong, implantable heart valves. Detailed knowledge of the mechanical properties of the native tissue as well as the developing tissue construct is vital for a better understanding and control of the remodeling processes induced by mechanical conditioning. The nonlinear, anisotropic and inhomogeneous mechanical behavior of heart valve tissue necessitates a mechanical characterization method that is capable of dealing with these complexities. In a recent computational study we showed that one single indentation test, combining force and deformation gradient data, provides sufficient information for local characterization of nonlinear soft anisotropic tissue properties. In the current study this approach is validated in two steps. First, indentation tests with varying indenter sizes are performed on linear elastic PDMS rubbers and compared to tensile tests on the same specimen. For the second step, tissue constructs are engineered using uniaxial or equibiaxial static constrained culture conditions. Digital image correlation (DIC) is used to quantify the anisotropy in the tissue constructs. For both validation steps, material parameters are estimated by inverse fitting of a computational model to the experimental results.  相似文献   

11.
Biomechanical studies suggest that one determinant of abdominal aortic aneurysm (AAA) rupture is related to the stress in the wall. In this regard, a reliable and accurate stress analysis of an in vivo AAA requires a suitable 3D constitutive model. To date, stress analysis conducted on AAA is mainly driven by isotropic tissue models. However, recent biaxial tensile tests performed on AAA tissue samples demonstrate the anisotropic nature of this tissue. The purpose of this work is to study the influence of geometry and material anisotropy on the magnitude and distribution of the peak wall stress in AAAs. Three-dimensional computer models of symmetric and asymmetric AAAs were generated in which the maximum diameter and length of the aneurysm were individually controlled. A five parameter exponential type structural strain-energy function was used to model the anisotropic behavior of the AAA tissue. The anisotropy is determined by the orientation of the collagen fibers (one parameter of the model). The results suggest that shorter aneurysms are more critical when asymmetries are present. They show a strong influence of the material anisotropy on the magnitude and distribution of the peak stress. Results confirm that the relative aneurysm length and the degree of aneurysmal asymmetry should be considered in a rupture risk decision criterion for AAAs.  相似文献   

12.
Microcracking in trabecular bone is responsible both for the mechanical degradation and remodeling of the trabecular bone tissue. Recent results on trabecular bone mechanics have demonstrated that bone tissue microarchitecture, tissue elastic heterogeneity and tissue-level mechanical anisotropy all should be considered to obtain detailed information on the mechanical stress state. The present study investigated the influence of tissue microarchitecture, tissue heterogeneity in elasticity and material separation properties and tissue-level anisotropy on the microcrack formation process. Microscale bone models were executed with the extended finite element method. It was demonstrated that anisotropy and heterogeneity of the bone tissue contribute significantly to bone tissue toughness and the resistance of trabecular bone to microcrack formation. The compressive strain to microcrack initiation was computed to increase by a factor of four from an assumed homogeneous isotropic tissue to an assumed anisotropic heterogenous tissue.  相似文献   

13.
Enhanced resolution of rapid and complex anisotropy decays was obtained by measurement and analysis of data from progressively quenched samples. Collisional quenching by acrylamide was used to vary the mean decay time of indole or of the tryptophan fluorescence from melittin. Anisotropy decays were obtained from the frequency-response of the polarized emission at frequencies from 4 to 2,000 MHz. Quenching increases the fraction of the total emission, which occurs on the subnanosecond timescale, and thereby provides increased information on picosecond rotational motions or local motions in proteins. For monoexponential subnanosecond anisotropy decays, enhanced resolution is obtained by measurement of the most highly quenched samples. For complex anisotropy decays, such as those due to both local motions and overall protein rotational diffusion, superior resolution is obtained by simultaneous analysis of data from quenched and unquenched samples. We demonstrate that measurement of quenched samples greatly reduces the uncertainty of the 50-ps correlation time of indole in water at 20 degrees C, and allows resolution of the anisotropic rotation of indole with correlation times of 140 and 720 ps. The method was applied to melittin in the monomeric and tetrameric forms. With increased quenching, the anisotropy data showed decreasing contributions from overall protein rotation and increased contribution from picosecond tryptophan motions. The tryptophan residues in both the monomeric and the tetrameric forms of melittin displayed substantial local motions with correlation times near 0.16 and 0.06 ns, respectively. The amplitude of the local motion is twofold less in the tetramer. These highly resolved anisotropy decays should be valuable for comparison with molecular dynamics simulations of melittin.  相似文献   

14.
Articular cartilage is known to be anisotropic and inhomogeneous because of its microstructure. In particular, its elastic properties are influenced by the arrangement of the collagen fibres, which are orthogonal to the bone-cartilage interface in the deep zone, randomly oriented in the middle zone, and parallel to the surface in the superficial zone. In past studies, cartilage permeability has been related directly to the orientation of the glycosaminoglycan chains attached to the proteoglycans which constitute the tissue matrix. These studies predicted permeability to be isotropic in the undeformed configuration, and anisotropic under compression. They neglected tissue anisotropy caused by the collagen network. However, magnetic resonance studies suggest that fluid flow is "directed" by collagen fibres in biological tissues. Therefore, the aim of this study was to express the permeability of cartilage accounting for the microstructural anisotropy and inhomogeneity caused by the collagen fibres. Permeability is predicted to be anisotropic and inhomogeneous, independent of the state of strain, which is consistent with the morphology of the tissue. Looking at the local anisotropy of permeability, we may infer that the arrangement of the collagen fibre network plays an important role in directing fluid flow to optimise tissue functioning.  相似文献   

15.
The diaphragmatic central tendon (DCT), a collagenous soft tissue membrane, acts as a mechanical buffer between the costal and crural muscles. Its direction of mechanical anisotropy has been shown to correspond to the collagen fiber preferred directions. These preferred directions were determined by gross histological examination, and were thus qualitative. In this work we quantified the collagen fiber architecture throughout the DCT using small angle light scattering (SALS). Helium-Neon laser light was passed through tendon specimens and the resultant scattered light distribution, which characterized the local collagen fiber architecture, was recorded with a linear array of five photodiodes. Throughout the DCT two distinct collagen fiber populations were consistently found. For each population three parameters were determined: 1) the preferred directions of collagen fibers, 2) the volume fraction (Vf) of fibers, 3) OI, an orientation index, which ranges from 0 percent for a random network to 100 percent for a perfectly oriented network. Vector maps were used to display results from 1) and 2), and showed a primary group (G1) going from the crural to costal muscles and a secondary one (G2) running perpendicular to G1. Comparisons of Vf between G1 and G2 showed that G1 contained about three times as many fibers as G2, a ratio similar to that found for the degree of mechanical anisotropy. OI were found to be about 60 percent, indicating a high degree of orientation, with no significant regional or population differences (p less than 0.05). These quantitative results suggest that throughout the DCT the degree of mechanical anisotropy is controlled exclusively by Vf.  相似文献   

16.
Titomir LI  Barinova NE 《Biofizika》2001,46(4):738-745
Using the equations of electrodynamics of stationary currents, relationships were derived for calculating the characteristics of electric and magnetic fields of an elementary (dipole) bioelectric generator in a heterogeneous medium consisting of two regions namely, an anisotropic conducting region corresponding to the excitable myocardium tissue and an isotropic conducting or dielectric region corresponding to the space outside the myocardium where the measurement is made. The shape of distributions of the electric potential and magnetic induction at the myocardium surface was determined, and the effect of anisotropy on these distributions was estimate. Formulas for the identification of the local excited zone within the myocardium from electric and magnetic measurements outside the excitable tissue or on its surface were obtained.  相似文献   

17.
Many load-bearing soft tissues exhibit mechanical anisotropy. In order to understand the behavior of natural tissues and to create tissue engineered replacements, quantitative relationships must be developed between the tissue structures and their mechanical behavior. We used a novel collagen gel system to test the hypothesis that collagen fiber alignment is the primary mechanism for the mechanical anisotropy we have reported in structurally anisotropic gels. Loading constraints applied during culture were used to control the structural organization of the collagen fibers of fibroblast populated collagen gels. Gels constrained uniaxially during culture developed fiber alignment and a high degree of mechanical anisotropy, while gels constrained biaxially remained isotropic with randomly distributed collagen fibers. We hypothesized that the mechanical anisotropy that developed in these gels was due primarily to collagen fiber orientation. We tested this hypothesis using two mathematical models that incorporated measured collagen fiber orientations: a structural continuum model that assumes affine fiber kinematics and a network model that allows for nonaffine fiber kinematics. Collagen fiber mechanical properties were determined by fitting biaxial mechanical test data from isotropic collagen gels. The fiber properties of each isotropic gel were then used to predict the biaxial mechanical behavior of paired anisotropic gels. Both models accurately described the isotropic collagen gel behavior. However, the structural continuum model dramatically underestimated the level of mechanical anisotropy in aligned collagen gels despite incorporation of measured fiber orientations; when estimated remodeling-induced changes in collagen fiber length were included, the continuum model slightly overestimated mechanical anisotropy. The network model provided the closest match to experimental data from aligned collagen gels, but still did not fully explain the observed mechanics. Two different modeling approaches showed that the level of collagen fiber alignment in our uniaxially constrained gels cannot explain the high degree of mechanical anisotropy observed in these gels. Our modeling results suggest that remodeling-induced redistribution of collagen fiber lengths, nonaffine fiber kinematics, or some combination of these effects must also be considered in order to explain the dramatic mechanical anisotropy observed in this collagen gel model system.  相似文献   

18.
Determination of material parameters for soft tissue frequently involves regression of material parameters for nonlinear, anisotropic constitutive models against experimental data from heterogeneous tests. Here, parameter estimation based on membrane inflation is considered. A four parameter nonlinear, anisotropic hyperelastic strain energy function was used to model the material, in which the parameters are cast in terms of key response features. The experiment was simulated using finite element (FE) analysis in order to predict the experimental measurements of pressure versus profile strain. Material parameter regression was automated using inverse FE analysis; parameter values were updated by use of both local and global techniques, and the ability of these techniques to efficiently converge to a best case was examined. This approach provides a framework in which additional experimental data, including surface strain measurements or local structural information, may be incorporated in order to quantify heterogeneous nonlinear material properties.  相似文献   

19.
The mechanical behavior of soft tissue demonstrates a number of complex features including nonlinearity, anisotropy, viscoelasticity, and growth. Characteristic features of the time-dependent and anisotropic behavior are related to the properties of various components of the tissue such as fibrous collagen and elastin networks, large proteins and sugars attached to these networks, and interstitial fluid. Attempts to model the elastic behavior of these tissues based on assumptions about the behavior of the underlying constituents have been reasonably successful, but the essential addition of viscoelasticity to these models has been met with varying success. Here, a new rheological network model is proposed using, as its basis, an orthotropic hyperelastic constitutive model for fibrous tissue and a viscoelastic reptation model for soft materials. The resulting model has been incorporated into numerical and computational models, and is shown to capture the mechanical behavior of soft tissue in various modes of deformation including uniaxial and biaxial tension and simple shear.  相似文献   

20.
Traditionally, the complex mechanical behavior of planar soft biological tissues is characterized by (multi)axial tensile testing. While uniaxial tests do not provide sufficient information for a full characterization of the material anisotropy, biaxial tensile tests are difficult to perform and tethering effects limit the analyses to a small central portion of the test sample. In both cases, determination of local mechanical properties is not trivial. Local mechanical characterization may be performed by indentation testing. Conventional indentation tests, however, often assume linear elastic and isotropic material properties, and therefore these tests are of limited use in characterizing the nonlinear, anisotropic material behavior typical for planar soft biological tissues. In this study, a spherical indentation experiment assuming large deformations is proposed. A finite element model of the aortic valve leaflet demonstrates that combining force and deformation gradient data, one single indentation test provides sufficient information to characterize the local material behavior. Parameter estimation is used to fit the computational model to simulated experimental data. The aortic valve leaflet is chosen as a typical example. However, the proposed method is expected to apply for the mechanical characterization of planar soft biological materials in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号