首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present work deals with the theoretical estimation of ion-pair binding energies and the energetic properties of four ion pairs formed by combining the 1-butyl-2,4-dinitro-3-methyl imidazolium ion with nitrate (I), perchlorate (II), dinitramide (III), or 3,5-dinitro-1,2,4-triazolate (IV) anions. The counterpoise-corrected ion-pair binding energies were calculated for each ion pair at the B3LYP/6-311+G(d,p) level of theory. Results show that the cation–anion interaction is strongest for ion pair I and weakest for IV, indicating that the nitrate (I) has a greater tendency to exist as a stable ionic salt whereas the 3,5-dinitro-1,2,4-triazolate (IV) may exist as an ionic liquid. Natural bond orbital (NBO) analysis and electrostatic potential (ESP) mapping revealed that charge transfer occurs in all of the ion pairs, but is greatest (0.25e) for ion pair I and smallest (0.03e) for IV, resulting in ion pair I being the least polarized. A nucleus-independent chemical shift (NICS) study revealed that the aromaticity of the 1-butyl-2,4-dinitro-3-methyl imidazolium ion significantly increases in ion pair IV, indicating that this has the greatest charge delocalization among all of the four ion pairs considered. Studies of thermodynamic and detonation properties showed that ion pair II is the most energetic ion pair in terms of its detonation velocity (D = 7.5 km s?1) and detonation pressure (P = 23.1 GPa). It is also envisaged that ion pair IV would exist as an energetic azolium azolate type ionic liquid that could be conveniently used as a secondary explosive characterized by detonation parameters D and P of 6.9 km s?1 and 19.3 GPa, respectively. These values are comparable to those of conventional explosives such as TNT.  相似文献   

2.
Proteins are typically represented by discrete atomic coordinates providing an accessible framework to describe different conformations. However, in some fields proteins are more accurately represented as near-continuous surfaces, as these are imprinted with geometric (shape) and chemical (electrostatics) features of the underlying protein structure. Protein surfaces are dependent on their chemical composition and, ultimately determine protein function, acting as the interface that engages in interactions with other molecules. In the past, such representations were utilized to compare protein structures on global and local scales and have shed light on functional properties of proteins. Here we describe RosettaSurf, a surface-centric computational design protocol, that focuses on the molecular surface shape and electrostatic properties as means for protein engineering, offering a unique approach for the design of proteins and their functions. The RosettaSurf protocol combines the explicit optimization of molecular surface features with a global scoring function during the sequence design process, diverging from the typical design approaches that rely solely on an energy scoring function. With this computational approach, we attempt to address a fundamental problem in protein design related to the design of functional sites in proteins, even when structurally similar templates are absent in the characterized structural repertoire. Surface-centric design exploits the premise that molecular surfaces are, to a certain extent, independent of the underlying sequence and backbone configuration, meaning that different sequences in different proteins may present similar surfaces. We benchmarked RosettaSurf on various sequence recovery datasets and showcased its design capabilities by generating epitope mimics that were biochemically validated. Overall, our results indicate that the explicit optimization of surface features may lead to new routes for the design of functional proteins.  相似文献   

3.
4.
Some selected diallylamine monomers have been studied with the semiempirical PM3 method as model compounds for N,N-dialkyl-N-2-(alkoxycarbonyl)allylammonium salts, in order to build up a quantitative and qualitative relationship between the experimental cyclopolymerizabilities of the monomers and calculated parameters such as charge, energy, geometrical features, bond orders, local softness values and HOMO-LUMO gaps. The charges on nitrogen, vinyl and allyl carbons, the activation barriers, the local softness values and the HOMO-LUMO gaps are found to represent the polymerizability trend of the monomers in general. Three-dimensional structures have been proposed for the reactants and their transition states by geometry optimizations with PM3.  相似文献   

5.
Dirithromycin is a macrolide antibiotic derived from erythromycin A. Dirithromycin is synthesized by the condensation of 9(S)-erythromycylamine with 2-(2-methoxyethoxy)-acetaldehyde. To gain insight into the synthesis, the condensation mechanism has been analyzed computationally by the AM1 method in the gas phase. First, the formation of the Schiff bases of dirithromycin and epidirithromycin from 9(S)-erythromycylamine and 2-(2-methoxyethoxy)-acetaldehyde were modeled. Then, the tautomerization of the Schiff bases to dirithromycin and epidirithromycin were considered. Finally, the epimerization of the Schiff base of epidirithromycin to the Schiff base of dirithromycin was investigated. Our results show that, even though carbinolamine forms faster for epidirithromycin than the corresponding structure for dirithromycin, dirithromycin is the major product of the synthesis. Figure Synthesis of dirithromycin  相似文献   

6.
We propose a computational model of mating strategies for controlled animal breeding programs. A mating strategy in a controlled breeding program is a heuristic with some optimization criteria as a goal. Thus, it is appropriate to use the computational tools available for analysis of optimization heuristics. In this paper, we propose the first discrete model of the controlled animal breeding problem and analyse heuristics for two possible objectives: (1) breeding for maximum diversity and (2) breeding a target individual. These two goals are representative of conservation biology and agricultural livestock management, respectively. We evaluate several mating strategies and provide upper and lower bounds for the expected number of matings. While the population parameters may vary and can change the actual number of matings for a particular strategy, the order of magnitude of the number of expected matings and the relative competitiveness of the mating heuristics remains the same. Thus, our simple discrete model of the animal breeding problem provides a novel viable and robust approach to designing and comparing breeding strategies in captive populations.  相似文献   

7.
A computational approach to motion perception   总被引:10,自引:0,他引:10  
In this paper it is shown that the computation of the optical flow from a sequence of timevarying images is not, in general, an underconstrained problem. A local algorithm for the computation of the optical flow which uses second order derivatives of the image brightness pattern, and that avoids the aperture problem, is presented. The obtained optical flow is very similar to the true motion field — which is the vector field associated with moving features on the image plane — and can be used to recover 3D motion information. Experimental results on sequences of real images, together with estimates of relevant motion parameters, like time-to-crash for translation and angular velocity for rotation, are presented and discussed. Due to the remarkable accuracy which can be achieved in estimating motion parameters, the proposed method is likely to be very useful in a number of computer vision applications.  相似文献   

8.
Comparative genomics usually involves managing the functional aspects of genomes, by simply comparing gene-by-gene functions. Following this approach, Mushegian and Koonin proposed a hypothetical minimal genome, Minimal Gene Set (MGS), aiming for a possible oldest ancestor genome. They obtained MGS by comparing the genomes of two simple bacteria and eliminating duplicated or functionally identical genes. The authors raised the fundamental question of whether a hypothetical organism possessing MGS is able to live or not. We attacked this viability problem specifying in silico the metabolic pathways of the MGS-based prokaryote. We then performed a dynamic simulation of cellular metabolic activities in order to check whether the MGS-prokaryote reaches some equilibrium state and produces the necessary biomass. We assumed these two conditions to be necessary for a living organism. Our simulations clearly show that the MGS does not express an organism that is able to live. We then iteratively proceeded with functional replacements in order to obtain a genome composition that gives rise to equilibrium. We ruled out 76 of the original 254 genes in the MGS, because they resulted in duplication from a functional point of view. We also added seven genes not present in the MGS. These genes encode for enzymes involved in critical nodes of the metabolic network. These modifications led to a genome composed of 187 elements expressing a virtually living organism, Virtual Cell (ViCe), that exhibits homeostatic capabilities and produces biomass. Moreover, the steady-state distribution of the concentrations of virtual metabolites that resulted was similar to that experimentally measured in bacteria. We conclude then that ViCe is able to “live in silico.”  相似文献   

9.
The structure-based design of protein–ligand interfaces with respect to different small molecules is of great significance in the discovery of functional proteins. By statistical analysis of a set of protein–ligand complex structures, it was determined that water-mediated hydrogen bonding at the protein–ligand interface plays a crucial role in governing the binding between the protein and the ligand. Based on the novel statistic results, a solvated ligand rotamer approach was developed to explicitly describe the key water molecules at the protein–ligand interface and a water-mediated hydrogen bonding model was applied in the computational protein design context to complement the continuum solvent model. The solvated ligand rotamer approach produces only one additional solvated rotamer for each rotamer in the ligand rotamer library and does not change the number of side-chain rotamers at each protein design site. This has greatly reduced the total combinatorial number in sequence selection for protein design, and the accuracy of the model was confirmed by two tests. For the water placement test, 61 % of the crystal water molecules were predicted correctly in five protein-ligand complex structures. For the sequence recapitulation test, 44.7 % of the amino acid identities were recovered using the solvated ligand rotamer approach and the water-mediated hydrogen bonding model, while only 30.4 % were recovered when the explicitly bound waters were removed. These results indicated that the developed solvated ligand rotamer approach is promising for functional protein design targeting novel protein–ligand interactions.  相似文献   

10.
We report a very fast and accurate physics-based method to calculate pH-dependent electrostatic effects in protein molecules and to predict the pK values of individual sites of titration. In addition, a CHARMm-based algorithm is included to construct and refine the spatial coordinates of all hydrogen atoms at a given pH. The present method combines electrostatic energy calculations based on the Generalized Born approximation with an iterative mobile clustering approach to calculate the equilibria of proton binding to multiple titration sites in protein molecules. The use of the GBIM (Generalized Born with Implicit Membrane) CHARMm module makes it possible to model not only water-soluble proteins but membrane proteins as well. The method includes a novel algorithm for preliminary refinement of hydrogen coordinates. Another difference from existing approaches is that, instead of monopeptides, a set of relaxed pentapeptide structures are used as model compounds. Tests on a set of 24 proteins demonstrate the high accuracy of the method. On average, the RMSD between predicted and experimental pK values is close to 0.5 pK units on this data set, and the accuracy is achieved at very low computational cost. The pH-dependent assignment of hydrogen atoms also shows very good agreement with protonation states and hydrogen-bond network observed in neutron-diffraction structures. The method is implemented as a computational protocol in Accelrys Discovery Studio and provides a fast and easy way to study the effect of pH on many important mechanisms such as enzyme catalysis, ligand binding, protein-protein interactions, and protein stability.  相似文献   

11.
We present a novel notion of binding site local similarity based on the analysis of complete protein environments of ligand fragments. Comparison of a query protein binding site (target) against the 3D structure of another protein (analog) in complex with a ligand enables ligand fragments from the analog complex to be transferred to positions in the target site, so that the complete protein environments of the fragment and its image are similar. The revealed environments are similarity regions and the fragments transferred to the target site are considered as binding patterns. The set of such binding patterns derived from a database of analog complexes forms a cloud-like structure (fragment cloud), which is a powerful tool for computational drug design. It has been shown on independent test sets that the combined use of a traditional energy-based score together with the cloud-based score responsible for the quality of embedding of a ligand into the fragment cloud improves the self-docking and screening results dramatically. The usage of a fragment cloud as a source of positioned molecular fragments fitting the binding protein environment has been validated by reproduction of experimental ligand optimization results.  相似文献   

12.
MOTIVATION: The task of engineering a protein to perform a target biological function is known as protein design. A commonly used paradigm casts this functional design problem as a structural one, assuming a fixed backbone. In probabilistic protein design, positional amino acid probabilities are used to create a random library of sequences to be simultaneously screened for biological activity. Clearly, certain choices of probability distributions will be more successful in yielding functional sequences. However, since the number of sequences is exponential in protein length, computational optimization of the distribution is difficult. RESULTS: In this paper, we develop a computational framework for probabilistic protein design following the structural paradigm. We formulate the distribution of sequences for a structure using the Boltzmann distribution over their free energies. The corresponding probabilistic graphical model is constructed, and we apply belief propagation (BP) to calculate marginal amino acid probabilities. We test this method on a large structural dataset and demonstrate the superiority of BP over previous methods. Nevertheless, since the results obtained by BP are far from optimal, we thoroughly assess the paradigm using high-quality experimental data. We demonstrate that, for small scale sub-problems, BP attains identical results to those produced by exact inference on the paradigmatic model. However, quantitative analysis shows that the distributions predicted significantly differ from the experimental data. These findings, along with the excellent performance we observed using BP on the smaller problems, suggest potential shortcomings of the paradigm. We conclude with a discussion of how it may be improved in the future.  相似文献   

13.
Biomechanics of cellular solids   总被引:20,自引:0,他引:20  
Materials with a cellular structure are widespread in nature and include wood, cork, plant parenchyma and trabecular bone. Natural cellular materials are often mechanically efficient: the honeycomb-like microstructure of wood, for instance, gives it an exceptionally high performance index for resisting bending and buckling. Here we review the mechanics of a wide range of natural cellular materials and examine their role in lightweight natural sandwich structures (e.g. iris leaves) and natural tubular structures (e.g. plant stems or animal quills). We also describe two examples of engineered biomaterials with a cellular structure, designed to replace or regenerate tissue in the body.  相似文献   

14.
An algorithm for bone remodeling is presented which allows for both a redistribution of density and a continuous change of principal material directions for the orthotropic material properties of bone. It employs a modal analysis to add density for growth and a local effective strain based analysis to redistribute density. General re-distribution functions are presented. The model utilizes theories of cellular solids to relate density and strength. The code predicts the same general density distributions and local orthotropy as observed in reality.  相似文献   

15.
The ageing process is actively regulated throughout an organism''s life, but studying the rate of ageing in individuals is difficult with conventional methods. Consequently, ageing studies typically make biological inference based on population mortality rates, which often do not accurately reflect the probabilities of death at the individual level. To study the relationship between individual and population mortality rates, we integrated in vivo switch experiments with in silico stochastic simulations to elucidate how carefully designed experiments allow key aspects of individual ageing to be deduced from group mortality measurements. As our case study, we used the recent report demonstrating that pheromones of the opposite sex decrease lifespan in Drosophila melanogaster by reversibly increasing population mortality rates. We showed that the population mortality reversal following pheromone removal was almost surely occurring in individuals, albeit more slowly than suggested by population measures. Furthermore, heterogeneity among individuals due to the inherent stochasticity of behavioural interactions skewed population mortality rates in middle-age away from the individual-level trajectories of which they are comprised. This article exemplifies how computational models function as important predictive tools for designing wet-laboratory experiments to use population mortality rates to understand how genetic and environmental manipulations affect ageing in the individual.  相似文献   

16.
A computational approach to simplifying the protein folding alphabet.   总被引:13,自引:0,他引:13  
What is the minimal number of residue types required to form a structured protein? This question is important for understanding protein modeling and design. Recently, an experimental finding by Baker and coworkers suggested a five-residue solution to this problem. We were motivated by their results and by the arguments of Wolynes to study reductions of protein representation based on the concept of mismatch between a reduced interaction matrix and the Miyazawa and Jernigan (MJ) matrix. We find several possible simplified schemes from the relationship of minimized mismatch versus the number of residue types (N = approximately 2-20). As a specific case, an optimal reduction with five types of residues has the same form as the simplified palette of Baker and coworkers. Statistical and kinetic features of a number of sequences are tested. Comparison of results from sequences with 20 residue types and their reduced representations indicates that the reduction by mismatch minimization is successful. For example, sequences with five types of residues have good folding ability and kinetic accessibility in model studies.  相似文献   

17.
Computational modeling is useful as a means to assemble and test what we know about proteins and networks. Models can help address key questions about the measurement, definition and function of proteomic networks. Here, we place these biological questions at the forefront in reviewing the computational strategies that are available to analyze proteomic networks. Recent examples illustrate how models can extract more information from proteomic data, test possible interactions between network proteins and link networks to cellular behavior. No single model can achieve all these goals, however, which is why it is critical to prioritize biological questions before specifying a particular modeling approach.  相似文献   

18.
Fluorescence resonance energy transfer (FRET) microscopy can measure the spatial distribution of protein interactions inside live cells. Such experiments give rise to complex data sets with many images of single cells, motivating data reduction and abstraction. In particular, determination of the value of the equilibrium dissociation constant (Kd) will provide a quantitative measure of protein–protein interactions, which is essential to reconstructing cellular signaling networks. Here, we investigate the feasibility of using quantitative FRET imaging of live cells to estimate the local value of Kd for two interacting labeled molecules. An algorithm is developed to infer the values of Kd using the intensity of individual voxels of 3‐D FRET microscopy images. The performance of our algorithm is investigated using synthetic test data, both in the absence and in the presence of endogenous (unlabeled) proteins. The influence of optical blurring caused by the microscope (confocal or wide field) and detection noise on the accuracy of Kd inference is studied. We show that deconvolution of images followed by analysis of intensity data at local level can improve the estimate of Kd. Finally, the performance of this algorithm using cellular data on the interaction between yellow fluorescent protein‐Rac and cyan fluorescent protein‐PBD in mammalian cells is shown.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号