首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L Ahmed  JW de Fockert 《PloS one》2012,7(8):e43101

Background

Working memory (WM) is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low) concurrent working memory load (WML), and in individuals with low (vs. high) working memory capacity (WMC). In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention.

Methodology/Principal Findings

In Experiment 1, distractibility from a distractor at a fixed distance from the target was greater when either WML was high or WMC was low, but surprisingly smaller when both WML was high and WMC low. Thus we observed an inverted-U relationship between reductions in WM resources and distractibility. In Experiment 2, we mapped the distribution of spatial attention as a function of WMC and WML, by recording distractibility across several target-to-distractor distances. The pattern of distractor effects across the target-to-distractor distances demonstrated that the distribution of the attentional window becomes dispersed as WM resources are limited. The attentional window was more spread out under high compared to low WML, and for low compared to high WMC individuals, and even more so when the two factors co-occurred (i.e., under high WML in low WMC individuals). The inverted-U pattern of distractibility effects in Experiment 1, replicated in Experiment 2, can thus be explained by differences in the spread of the attentional window as a function of WM resource availability.

Conclusions/Significance

The current findings show that limitations in WM resources, due to either WML or individual differences in WMC, affect the spatial distribution of attention. The difference in attentional constraining between high and low WMC individuals demonstrated in the current experiments helps characterise the nature of previously established associations between WMC and controlled attention.  相似文献   

2.
The Iowa Gambling Task (IGT) is a sequential learning task in which participants develop a tendency towards advantageous options arising from the outcomes associated with their previous decisions. The role of working memory in this complex task has been largely debated in the literature. On one hand, low working memory resources lead to a decrease in the number of advantageous decisions and make a significant part of participants unable to report explicitly which options are the most profitable. On the other hand, several studies have shown no contribution of working memory to the IGT decision patterns. In order to investigate this apparent incompatibility of results, we used an individual differences approach, which has proven an effective method to investigate the role of working memory in cognition. We compared the IGT decision patterns of participants as a function of their working memory capacity (WMC). As expected, contrary to low WMC participants, high WMC participants developed a tendency towards advantageous decisions. These findings lead us to discuss the role of WMC in decision making tasks.  相似文献   

3.
Training people to respond to alcohol images by making avoidance joystick movements can affect subsequent alcohol consumption, and has shown initial efficacy as a treatment adjunct. However, the mechanisms that underlie the training’s efficacy are unknown. The present study aimed to determine 1) whether the training’s effect is mediated by a change in action tendency or a change in selective attention, and 2) whether the training’s effect is moderated by individual differences in working memory capacity (WMC). Three groups of social drinkers (total N = 74) completed either approach-alcohol training, avoid-alcohol training or a sham-training on the Approach-Avoidance Task (AAT). Participants’ WMC was assessed prior to training, while their alcohol-related action tendency and selective attention were assessed before and after the training on the recently developed Selective-Attention/Action Tendency Task (SA/ATT), before finally completing an alcohol taste-test. There was no significant main effect of approach/avoidance training on alcohol consumption during the taste-test. However, there was a significant indirect effect of training on alcohol consumption mediated by a change in action tendency, but no indirect effect mediated by a change in selective attention. There was inconsistent evidence of WMC moderating training efficacy, with moderation found only for the effect of approach-alcohol training on the AAT but not on the SA/ATT. Thus approach/avoidance training affects alcohol consumption specifically by changing the underlying action tendency. Multiple training sessions may be required in order to observe more substantive changes in drinking behaviour.  相似文献   

4.
Three experiments were conducted to investigate the effects of working memory content on temporal attention in a rapid serial visual presentation attentional blink paradigm. It was shown that categorical similarity between working memory content and the target stimuli pertaining to the attentional task (both digits) increased attentional blink magnitude compared to a condition in which this similarity was absent (colors and digits, respectively). This effect was only observed when the items in working memory were not presented as conjunctions of the involved categories (i.e., colored digits). This suggested that storage and retrieval from working memory was at least preferentially conjunctive in this case. It was furthermore shown that the content of working memory enhanced the identification rate of the second target, by means of repetition priming, when inter-target lag was short and the attentional blink was in effect. The results are incompatible with theories of temporal attention that assume working memory has no causal role in the attentional blink and support theories that do.  相似文献   

5.
This study examined whether rapid temporal auditory processing, verbal working memory capacity, non-verbal intelligence, executive functioning, musical ability and prior foreign language experience predicted how well native English speakers (N = 120) discriminated Norwegian tonal and vowel contrasts as well as a non-speech analogue of the tonal contrast and a native vowel contrast presented over noise. Results confirmed a male advantage for temporal and tonal processing, and also revealed that temporal processing was associated with both non-verbal intelligence and speech processing. In contrast, effects of musical ability on non-native speech-sound processing and of inhibitory control on vowel discrimination were not mediated by temporal processing. These results suggest that individual differences in non-native speech-sound processing are to some extent determined by temporal auditory processing ability, in which males perform better, but are also determined by a host of other abilities that are deployed flexibly depending on the characteristics of the target sounds.  相似文献   

6.
People sometimes fail to notice salient unexpected objects when their attention is otherwise occupied, a phenomenon known as inattentional blindness. To explore individual differences in inattentional blindness, we employed both static and dynamic tasks that either presented the unexpected object away from the focus of attention (spatial) or near the focus of attention (central). We hypothesized that noticing in central tasks might be driven by the availability of cognitive resources like working memory, and that noticing in spatial tasks might be driven by the limits on spatial attention like attention breadth. However, none of the cognitive measures predicted noticing in the dynamic central task or in either the static or dynamic spatial task. Only in the central static task did working memory capacity predict noticing, and that relationship was fairly weak. Furthermore, whether or not participants noticed an unexpected object in a static task was only weakly associated with their odds of noticing an unexpected object in a dynamic task. Taken together, our results are largely consistent with the notion that noticing unexpected objects is driven more by stochastic processes common to all people than by stable individual differences in cognitive abilities.  相似文献   

7.
The aim of this study was to examine whether age-related changes in the speed of information processing are the best predictors of the increase in sensitivity to time throughout childhood. Children aged 5 and 8 years old, as well adults, were given two temporal bisection tasks, one with short (0.5/1-s) and the other with longer (4/8-s) anchor durations. In addition, the participants'' scores on different neuropsychological tests assessing both information processing speed and other dimensions of cognitive control (short-term memory, working memory, selective attention) were calculated. The results showed that the best predictor of individual variances in sensitivity to time was information processing speed, although working memory also accounted for some of the individual differences in time sensitivity, albeit to a lesser extent. In sum, the faster the information processing speed of the participants, the higher their sensitivity to time was. These results are discussed in the light of the idea that the development of temporal capacities has its roots in the maturation of the dynamic functioning of the brain.  相似文献   

8.
Normal aging is associated with a degradation of perceptual abilities and a decline in higher-level cognitive functions, notably working memory. To remediate age-related deficits, cognitive training programs are increasingly being developed. However, it is not yet definitively established if, and by what mechanisms, training ameliorates effects of cognitive aging. Furthermore, a major factor impeding the success of training programs is a frequent failure of training to transfer benefits to untrained abilities. Here, we offer the first evidence of direct transfer-of-benefits from perceptual discrimination training to working memory performance in older adults. Moreover, using electroencephalography to evaluate participants before and after training, we reveal neural evidence of functional plasticity in older adult brains, such that training-induced modifications in early visual processing during stimulus encoding predict working memory accuracy improvements. These findings demonstrate the strength of the perceptual discrimination training approach by offering clear psychophysical evidence of transfer-of-benefit and a neural mechanism underlying cognitive improvement.  相似文献   

9.

Background

Working Memory Capacity (WMC) is thought to be related to executive control and focused memory search abilities. These two hypotheses make contrasting predictions regarding the effects of retrieval on forgetting. Executive control during memory retrieval is believed to lead to retrieval induced forgetting (RIFO) because inhibition of competing memory traces during retrieval renders them temporarily less accessible. According to this suggestion, superior executive control should increase RIFO. Alternatively, superior focused search abilities could diminish RIFO, because delimiting the search set reduces the amount of competition between traces and thus the need for inhibition. Some evidence suggests that high WMC is related to more RIFO, which is inconsistent with the focused search hypothesis.

Methodology/Principal Findings

Using the RIFO paradigm, we created distinct and overlapping categories to manipulate the amount of competition between them. This overlap increased competition between some categories while exclusive use of weak exemplars ensured negligible effects of output interference and integration.Low WMC individuals exhibited RIFO within and between overlapping categories, indicating the effect of resolving competition during retrieval. High WMC individuals only exhibited between-category RIFO, suggesting they experienced reduced competition resolution demands. Low WMC Individuals exhibited the strongest RIFO and no retrieval benefits when interference resolution demands were high.

Conclusions/Significance

Our findings qualify the inhibitory explanation for RIFO by incorporating the focused search hypothesis for materials that are likely to pose extraordinary challenges at retrieval. The results highlight the importance of considering individual differences in retrieval-induced effects and qualify existing models of these effects.  相似文献   

10.
The acute behavioral effects of atropine sulfate were assessed using a battery of complex food-reinforced operant tasks that included: temporal response differentiation (TRD, n = 7); delayed matching-to-sample (DMTS, n = 6), progressive ratio (PR, n = 8), incremental repeated acquisition (IRA, n = 8), and conditioned position responding (CPR, n = 8). Performance in these tasks is thought to depend primarily upon specific brain functions such as time perception, short-term memory and attention, motivation, learning, and color and position discrimination, respectively. Atropine sulfate (0.01-0.56 mg/kg iv), given 15-min pretesting, produced significant dose-dependent decreases in the number of reinforcers obtained in all tasks. Response rates decreased significantly at greater than or equal to 0.03 mg/kg for the learning and discrimination tasks, at greater than or equal to 0.10 mg/kg for the motivation and short-term memory and attention tasks, and at greater than or equal to 0.30 mg/kg for the time perception task. Response accuracies were significantly decreased at doses greater than or equal to 0.10 mg/kg for the learning, discrimination, and short-term memory and attention tasks, and at greater than or equal to 0.30 mg/kg for the time perception task. Thus, the order of task sensitivity to any disruption by atropine is learning = color and position discrimination greater than time perception = short-term memory and attention = motivation (IRA = CPR greater than TRD = DMTS = PR). Thus in monkeys, the rates of responding in operant tasks designed to model learning and color and position discrimination were the most sensitive measures to atropine's behavioral effects. Accuracy in these same task was also disrupted but at higher doses. These data support the hypothesis that cholinergic systems play a greater role in the speed (but not accuracy) of performance of our learning and discrimination tasks compared to all other tasks. Accuracy of responding in these and the short-term memory task, all of which involve the use of lights as visual stimuli, was more sensitive to disruption by atropine than those tasks which did not utilize such strong visual stimuli.  相似文献   

11.
Physiological arousal that occurs during narrative production is thought to reflect emotional processing and cognitive effort (Bar-Haim et al. in Dev Psychobiol 44:238–249, 2004). The purpose of this study was to determine whether individual differences in visuospatial working memory and/or verbal working memory capacity predict physiological arousal in a narrative task. Visuospatial working memory was a significant predictor of skin conductance level (SCL); verbal working memory was not. When visuospatial working memory interference was imposed, visuospatial working memory was no longer a significant predictor of SCL. Visuospatial interference also resulted in a significant reduction in SCL. Furthermore, listener ratings of narrative quality were contingent upon the visuospatial working memory resources of the narrator. Potential implications for educators and clinical practitioners are discussed.  相似文献   

12.
The objective of the paper was to study the developmental continuity of working memory function from infancy to preschool age. At the age of 10 to 11 months 44 participants completed delayed response task (A-not-B) that measures working memory function. Between 5 and 7 years of age the same participants performed three tasks assessing working memory for temporal order in auditory and visual modalities and a control task measuring short-term visuospatial memory. The dependence of temporal-order memory at preschool age on individual level of infant working memory was found for all methods of measurement despite the differences in way of presentation and reproducing of the stimuli order. Results indicate direct continuity in the development of working memory function from infancy to preschool age.  相似文献   

13.
BackgroundFormal musical training is known to have positive effects on attentional and executive functioning, processing speed, and working memory. Consequently, one may expect to find differences in the dynamics of temporal attention between musicians and non-musicians. Here we address the question whether that is indeed the case, and whether any beneficial effects of musical training on temporal attention are modality specific or generalize across sensory modalities.Conclusion/SignificanceAB magnitude within one modality can generalize to another modality, but this turns out not to be the case for every individual. Formal musical training seems to have a domain-general, but modality-specific beneficial effect on selective attention. The results fit with the idea that a major source of attentional restriction as reflected in the AB lies in modality-specific, independent sensory systems rather than a central amodal system. The findings demonstrate that individual differences in AB magnitude can provide important information about the modular structure of human cognition.  相似文献   

14.

Background

Because pain often signals the occurrence of potential tissue damage, a nociceptive stimulus has the capacity to involuntarily capture attention and take priority over other sensory inputs. Whether distraction by nociception actually occurs may depend upon the cognitive characteristics of the ongoing activities. The present study tested the role of working memory in controlling the attentional capture by nociception.

Methodology and Principal Findings

Participants performed visual discrimination and matching tasks in which visual targets were shortly preceded by a tactile distracter. The two tasks were chosen because of the different effects the involvement of working memory produces on performance, in order to dissociate the specific role of working memory in the control of attention from the effect of general resource demands. Occasionally (i.e. 17% of the trials), tactile distracters were replaced by a novel nociceptive stimulus in order to distract participants from the visual tasks. Indeed, in the control conditions (no working memory), reaction times to visual targets were increased when the target was preceded by a novel nociceptive distracter as compared to the target preceded by a frequent tactile distracter, suggesting attentional capture by the novel nociceptive stimulus. However, when the task required an active rehearsal of the visual target in working memory, the novel nociceptive stimulus no longer induced a lengthening of reaction times to visual targets, indicating a reduction of the distraction produced by the novel nociceptive stimulus. This effect was independent of the overall task demands.

Conclusion and Significance

Loading working memory with pain-unrelated information may reduce the ability of nociceptive input to involuntarily capture attention, and shields cognitive processing from nociceptive distraction. An efficient control of attention over pain is best guaranteed by the ability to maintain active goal priorities during achievement of cognitive activities and to keep pain-related information out of task settings.  相似文献   

15.
Schultz W 《Neuron》2011,69(4):603-617
How do addictive drugs hijack the brain's reward system? This review speculates how normal, physiological reward processes may be affected by addictive drugs. Addictive drugs affect acute responses and plasticity in dopamine neurons and postsynaptic structures. These effects reduce reward discrimination, increase the effects of reward prediction error signals, and enhance neuronal responses to reward-predicting stimuli, which may contribute to compulsion. Addictive drugs steepen neuronal temporal reward discounting and create temporal myopia that impairs the control of drug taking. Tonically enhanced dopamine levels may disturb working memory mechanisms necessary for assessing background rewards and thus may generate inaccurate neuronal reward predictions. Drug-induced working memory deficits may impair neuronal risk signaling, promote risky behaviors, and facilitate preaddictive drug use. Malfunctioning adaptive reward coding may lead to overvaluation of drug rewards. Many of these malfunctions may result in inadequate neuronal decision mechanisms and lead to choices biased toward drug rewards.  相似文献   

16.
The impact of manipulating explicit attentional demands on working memory has not been well studied in rodents. The present experiment was designed to test the effects of incorporating a retention interval in a two-lever sustained attention task that requires discrimination of visual signals and non-signals and that has previously been shown to yield valid measures of attention in the rat. Upon establishing baseline performance, additional manipulations, including presentation of a visual distracter and increasing the length and variability of the inter-trial interval were conducted. During baseline conditions, accurate detection of signals, but not non-signals, decreased as the retention interval was increased. Presentation of a flashing houselight throughout the session eliminated delay-dependent detection of signals. Increasing the inter-trial interval improved detection of signals and decreased detection of non-signals at the longest retention interval. Finally, increasing the variability of the inter-trial interval did not have significant effects on performance above and beyond the effects of increasing the inter-trial interval. The present experiment demonstrates that manipulation of explicit attentional demands can alter working memory performance in the rat. This task may be employed to understand the neuropharmacological and neuroanatomical substrates mediating memory while attentional load is systematically varied.  相似文献   

17.
Schizophrenia and cognitive function   总被引:9,自引:0,他引:9  
Schizophrenia is often associated with cognitive deficits, particularly within the domains of memory and language. Specific cognitive deficits have recently been linked to psychotic phenomena, including verbal hallucinations and disorganized speech. Impairments of working and semantic memory are primarily due to dysfunction of the frontal cortex, temporal cortex, and hippocampus. Cognitive skills in schizophrenia predict social functioning and may serve as outcome measures in the development of effective treatment strategies.  相似文献   

18.
What role does attention play in ensuring the temporal precision of visual perception? Behavioural studies have investigated feature selection and binding in time using fleeting sequences of stimuli in the Rapid Serial Visual Presentation (RSVP) paradigm, and found that temporal accuracy is reduced when attentional control is diminished. To reduce the efficacy of attentional deployment, these studies have employed the Attentional Blink (AB) phenomenon. In this article, we use electroencephalography (EEG) to directly investigate the temporal dynamics of conscious perception. Specifically, employing a combination of experimental analysis and neural network modelling, we test the hypothesis that the availability of attention reduces temporal jitter in the latency between a target''s visual onset and its consolidation into working memory. We perform time-frequency analysis on data from an AB study to compare the EEG trials underlying the P3 ERPs (Event-related Potential) evoked by targets seen outside vs. inside the AB time window. We find visual differences in phase-sorted ERPimages and statistical differences in the variance of the P3 phase distributions. These results argue for increased variation in the latency of conscious perception during the AB. This experimental analysis is complemented by a theoretical exploration of temporal attention and target processing. Using activation traces from the Neural-ST2 model, we generate virtual ERPs and virtual ERPimages. These are compared to their human counterparts to propose an explanation of how target consolidation in the context of the AB influences the temporal variability of selective attention. The AB provides us with a suitable phenomenon with which to investigate the interplay between attention and perception. The combination of experimental and theoretical elucidation in this article contributes to converging evidence for the notion that the AB reflects a reduction in the temporal acuity of selective attention and the timeliness of perception.  相似文献   

19.
A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception.  相似文献   

20.
Neural network models of working memory, called “sustained temporal order recurrent” (STORE) models, are described. They encode the invariant temporal order of sequential events in short-term memory (STM) in a way that mimics cognitive data about working memory, including primacy, recency, and bowed order and error gradients. As new items are presented, the pattern of previously stored items remains invariant in the sense that relative activations remain constant through time. This invariant temporal order code enables all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such competence is needed to design self-organizing temporal recognition and planning systems in which any subsequence of events may need to be categorized in order to control and predict future behavior or external events. STORE models show how arbitrary event sequences may be invariantly stored, including repeated events. A preprocessor interacts with the working memory to represent event repeats in spatially separate locations. It is shown why at least two processing levels are needed to invariantly store events presented with variable durations and interstimulus intervals. It is also shown how network parameters control the type and shape of primacy, recency, or bowed temporal order gradients that will be stored. Received: 3 November 1992/Accepted in revised form: 2 May 1994  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号