首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article deals with the role of fish's body and object's geometry on determining the image spatial shape in pulse Gymnotiforms. This problem was explored by measuring local electric fields along a line on the skin in the presence and absence of objects. We depicted object's electric images at different regions of the electrosensory mosaic, paying particular attention to the perioral region where a fovea has been described. When sensory surface curvature increases relative to the object's curvature, the image details depending on object's shape are blurred and finally disappear. The remaining effect of the object on the stimulus profile depends on the strength of its global polarization. This depends on the length of the object's axis aligned with the field, in turn depending on fish body geometry. Thus, fish's body and self-generated electric field geometries are embodied in this "global effect" of the object. The presence of edges or local changes in impedance at the nearest surface of closely located objects adds peaks to the image profiles ("local effect" or "object's electric texture"). It is concluded that two cues for object recognition may be used by active electroreceptive animals: global effects (informing on object's dimension along the field lines, conductance, and position) and local effects (informing on object's surface). Since the field has fish's centered coordinates, and electrosensory fovea is used for exploration of surfaces, fish fine movements are essential to perform electric perception. We conclude that fish may explore adjacent objects combining active movements and electrogenesis to represent them using electrosensory information.  相似文献   

2.
Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one''s own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed.  相似文献   

3.
The sense of touch provides fundamental information about the surrounding world, and feedback about our own actions. Although touch is very important during the earliest stages of life, to date no study has investigated infants’ abilities to process visual stimuli implying touch. This study explores the developmental origins of the ability to visually recognize touching gestures involving others. Looking times and orienting responses were measured in a visual preference task, in which participants were simultaneously presented with two videos depicting a touching and a no-touching gesture involving human body parts (face, hand) and/or an object (spoon). In Experiment 1, 2-day-old newborns and 3-month-old infants viewed two videos: in one video a moving hand touched a static face, in the other the moving hand stopped before touching it. Results showed that only 3-month-olds, but not newborns, differentiated the touching from the no-touching gesture, displaying a preference for the former over the latter. To test whether newborns could manifest a preferential visual response when the touched body part is different from the face, in Experiment 2 newborns were presented with touching/no-touching gestures in which a hand or an inanimate object—i.e., a spoon- moved towards a static hand. Newborns were able to discriminate a hand-to-hand touching gesture, but they did not manifest any preference for the object-to-hand touch. The present findings speak in favour of an early ability to visually recognize touching gestures involving the interaction between human body parts.  相似文献   

4.
Electroreceptive fish detect nearby objects by processing the information contained in the pattern of electric currents through the skin. The distribution of local transepidermal voltage or current density on the sensory surface of the fish's skin is the electric image of the surrounding environment. This article reports a model study of the quantitative effect of the conductance of the internal tissues and the skin on electric image generation in Gnathonemus petersii (Günther 1862). Using realistic modelling, we calculated the electric image of a metal object on a simulated fish having different combinations of internal tissues and skin conductances. An object perturbs an electric field as if it were a distribution of electric sources. The equivalent distribution of electric sources is referred to as an object's imprimence. The high conductivity of the fish body lowers the load resistance of a given object's imprimence, increasing the electric image. It also funnels the current generated by the electric organ in such a way that the field and the imprimence of objects in the vicinity of the rostral electric fovea are enhanced. Regarding skin conductance, our results show that the actual value is in the optimal range for transcutaneous voltage modulation by nearby objects. This result suggests that "voltage" is the answer to the long-standing question as to whether current or voltage is the effective stimulus for electroreceptors. Our analysis shows that the fish body should be conceived as an object that interacts with nearby objects, conditioning the electric image. The concept of imprimence can be extended to other sensory systems, facilitating the identification of features common to different perceptual systems.  相似文献   

5.
The relation between somatosensory input and motor output is asymmetric. Somatosensation is associated with every movement an animal makes, but movement is not required for somatosensation. This symposium paper proposes a classification scheme for movement, in which movements are placed along a continuum that describes the role that somatosensory information plays during the movement. Fine sensorimotor control-manipulation and exploration-are found to fall to one extreme of the spectrum, and exploratory movements in particular are shown to possess characteristics that clearly distinguish them from other varieties of movement. Specifically, the exploratory process must permit animals to extract an object's features independently of the sequence of movements executed to explore the object. Based in part on our work on the rat vibrissal system, we suggest that exploration of objects may consist of two complementary levels of sensorimotor prediction operating in parallel. At the cognitive level, the animal might move so as to perform hypothesis testing about the identity or nature of the object. The particular hypothesis tests chosen by the animal might be implemented through sequences of control-level predictions that could be generated at the level of the brainstem and cerebellum.  相似文献   

6.
Cell cytoskeleton and tensegrity   总被引:1,自引:0,他引:1  
Volokh KY  Vilnay O  Belsky M 《Biorheology》2002,39(1-2):63-67
The role of tensegrity architecture of the cytoskeleton in the mechanical behavior of living cells is examined by computational studies. Plane and spatial tensegrity models of the cytoskeleton are considered as well as their non-tensegrity counterparts. Local buckling including deep postbuckling response of the compressed microtubules of the cytoskeleton is considered. The tensioned microfilaments cannot sustain compression. Large deformation of the whole model is accounted and fully nonlinear analysis is performed. It is shown that in the case of local buckling of the microtubules non-tensegrity models exhibit qualitatively the same linear stiffening as their tensegrity counterparts. This result raises the question of experimental validation of the local buckling of microtubules. If the microtubules of real cells are not straight, then tensegrity (in a narrow sense) is not a necessary attribute of the cytoskeleton architecture. If the microtubules are straight then tensegrity is more likely to be the cytoskeletal architecture.  相似文献   

7.
Postural sway was compared for humans touching an external object while standing on an immobile or slowly moving posturographic platform. When the platform moves, the central nervous system may interpret the movement of the point of the contact with the external object as the movement of the body relative to the support or as the movement of the support itself. Thus, the information concerning the body position that is provided by the touch becomes ambiguous. It was demonstrated that contact with an external object during standing on an unstable support leads to a decrease in support sway. When a subject stands on a moving platform, this decrease is smaller than in the case of an immobile platform. Contact with an external object causes a decrease in postural responses to shank muscle vibrations on an immobile platform. On a moving platform, this decrease is nonsignificant. The change in postural sway depending on the unambiguity of afferent information is discussed in terms of the interaction between afferent signals of different modalities on the basis of the body scheme in subjects maintaining balance.Translated from Fiziologiya Cheloveka, Vol. 31, No. 1, 2005, pp. 59–65.Original Russian Text Copyright © 2005 by Kazennikov, Shlykov, Levik.  相似文献   

8.
Fast movement in complex environments requires the controlled evasion of obstacles. Sonar-based obstacle evasion involves analysing the acoustic features of object-echoes (e.g., echo amplitude) that correlate with this object's physical features (e.g., object size). Here, we investigated sonar-based obstacle evasion in bats emerging in groups from their day roost. Using video-recordings, we first show that the bats evaded a small real object (ultrasonic loudspeaker) despite the familiar flight situation. Secondly, we studied the sonar coding of object size by adding a larger virtual object. The virtual object echo was generated by real-time convolution of the bats’ calls with the acoustic impulse response of a large spherical disc and played from the loudspeaker. Contrary to the real object, the virtual object did not elicit evasive flight, despite the spectro-temporal similarity of real and virtual object echoes. Yet, their spatial echo features differ: virtual object echoes lack the spread of angles of incidence from which the echoes of large objects arrive at a bat's ears (sonar aperture). We hypothesise that this mismatch of spectro-temporal and spatial echo features caused the lack of virtual object evasion and suggest that the sonar aperture of object echoscapes contributes to the sonar coding of object size.  相似文献   

9.
Recognizing depth-rotated objects: a review of recent research and theory   总被引:1,自引:0,他引:1  
Biederman I 《Spatial Vision》2000,13(2-3):241-253
  相似文献   

10.
It has been well known that the canal driven vestibulo-ocular reflex (VOR) is controlled and modulated through the central nervous system by external sensory information (e.g. visual, otolithic and somatosensory inputs) and by mental conditions. Because the origin of retinal image motion exists both in the subjects (eye, head and body motions) and in the external world (object motion), the head motion should be canceled and/or the object should be followed by smooth eye movements. Human has developed a lot of central nervous mechanisms for smooth eye movements (e.g. VOR, optokinetic reflex and smooth pursuit eye movements). These mechanisms are thought to work for the purpose of better seeing. Distinct mechanism will work in appropriate self motion and/or object motion. As the results, whole mechanisms are controlled in a purpose-directed manner. This can be achieved by a self-organizing holistic system. Holistic system is very useful for understanding human oculomotor behavior.  相似文献   

11.
Movement formulas, engrams, kinesthetic images and internal models of the body in action are notions derived mostly from clinical observations of brain-damaged subjects. They also suggest that the prehensile geometry of an object is integrated in the neural circuits and includes the object's graspable characteristics as well as its semantic properties. In order to determine whether there is a conjoined representation of the graspable characteristics of an object in relation to the actual grasping, it is necessary to separate the graspable (low-level) from the semantic (high-level) properties of the object. Right-handed subjects were asked to grasp and lift a smooth 300-g cylinder with one hand, before and after judging the level of difficulty of a "grasping for pouring" action, involving a smaller cylinder and using the opposite hand. The results showed that simulated grasps with the right hand exert a direct influence on actual motor acts with the left hand. These observations add to the evidence that there is a conjoined representation of the graspable characteristics of the object and the biomechanical constraints of the arm.  相似文献   

12.
The macromolecular organization of vitreous gel is responsible for its viscoelastic properties. Knowledge of this correlation enables us to relate the physical properties of vitreous to its pathology, as well as optimize surgical procedures such as vitrectomy. Herein, we studied the rheological properties (e.g. dynamic deformation, shear stress-strain flow, and creep compliance) of porcine vitreous humor using a stressed-control shear rheometer. All experiments were performed in a closed environment with the temperature set to that of the human body (i.e. 37°C) to mimic in-vivo conditions. We modeled the creep deformation using the two-element retardation spectrum model. By associating each element of the model to an individual biopolymeric system in the vitreous gel, a distinct response to the applied stress was observed from each component. We hypothesized that the first viscoelastic response with the short time scale (~1 s) is associated with the collagen structure, while the second viscoelastic response with longer time scale (~100 s) is related to the microfibrilis and hyaluronan network. Consequently, we were able to differentiate the role of each main component from the overall viscoelastic properties.  相似文献   

13.
Spinal motor control system incorporates an internal model of limb dynamics   总被引:1,自引:0,他引:1  
The existence and utilization of an internal representation of the controlled object is one of the most important features of the functioning of neural motor control systems. This study demonstrates that this property already exists at the level of the spinal motor control system (SMCS), which is capable of generating motor patterns for reflex rhythmic movements, such as locomotion and scratching, without the aid of the peripheral afferent feedback, but substantially modifies the generated activity in response to peripheral afferent stimuli. The SMCS is presented as an optimal control system whose optimality requires that it incorporate an internal model (IM) of the controlled object's dynamics. A novel functional mechanism for the integration of peripheral sensory signals with the corresponding predictive output from the IM, the summation of information precision (SIP) is proposed. In contrast to other models in which the correction of the internal representation of the controlled object's state is based on the calculation of a mismatch between the internal and external information sources, the SIP mechanism merges the information from these sources in order to optimize the precision of the controlled object's state estimate. It is demonstrated, based on scratching in decerebrate cats as an example of the spinal control of goal-directed movements, that the results of computer modeling agree with the experimental observations related to the SMCS's reactions to phasic and tonic peripheral afferent stimuli. It is also shown that the functional requirements imposed by the mathematical model of the SMCS comply with the current knowledge about the related properties of spinal neuronal circuitry. The crucial role of the spinal presynaptic inhibition mechanism in the neuronal implementation of SIP is elucidated. Important differences between the IM and a state predictor employed for compensating for a neural reflex time delay are discussed. Received: 8 February 2000 / Accepted: 24 March 2000  相似文献   

14.
The weakly electric fish Gnathonemus petersii detects, localizes, and analyzes objects during active electrolocation even in complete darkness. This enables these fish to lead a nocturnal life and find and identify their prey (small insect larvae) on the ground of their freshwater habitat. During active electrolocation, fish produce a series of brief electric signals, electric organ discharges (EOD), with an electric organ in their tail. Each EOD builds up a stable electric field around the fish, which is distorted only by nearby objects. Field distortions lead to changes of the transepidermal electric current flow at a region of the fish's electroreceptive skin surface called the 'electric image'. Within the electric image, locally perceived EODs can be either altered in amplitude or waveform by an object. Fish measure both parameters to assess object properties, such as the capacitive and resistive components of the object's complex impedance. the object's size and shape, and its distance from the fish. None of these object properties can be evaluated in isolation, but have to be inferred during parallel processing of electric image spatial and qualitative parameters. Two anterior skin regions of G. petersii appear to possess particular properties for special electrolocation tasks and we therefore refer to them as 'foveal' regions. Because of its high electroreceptor density, the electric field geometry around it, and its behavioral use, the 'nasal region' between the nares and the mouth at the head of the fish is suggested to be a fovea for long-range guidance and object detection. We propose that the 'Schnauzenorgan', a long and flexible chin appendix covered densely with electroreceptor organs, is a second electroreceptive fovea associated with a short-range (food) identification system. Together, these two electric foveae constitute an effective prey detection and identification system.  相似文献   

15.
Studies have shown that internal representations of manipulations of objects with asymmetric mass distributions that are generated within a specific orientation are not generalizable to novel orientations, i.e., subjects fail to prevent object roll on their first grasp-lift attempt of the object following 180° object rotation. This suggests that representations of these manipulations are specific to the reference frame in which they are formed. However, it is unknown whether that reference frame is specific to the hand, the body, or both, because rotating the object 180° modifies the relation between object and body as well as object and hand. An alternative, untested explanation for the above failure to generalize learned manipulations is that any rotation will disrupt grasp performance, regardless if the reference frame in which the manipulation was learned is maintained or modified. We examined the effect of rotations that (1) maintain and (2) modify relations between object and body, and object and hand, on the generalizability of learned two-digit manipulation of an object with an asymmetric mass distribution. Following rotations that maintained the relation between object and body and object and hand (e.g., rotating the object and subject 180°), subjects continued to use appropriate digit placement and load force distributions, thus generating sufficient compensatory moments to minimize object roll. In contrast, following rotations that modified the relation between (1) object and hand (e.g. rotating the hand around to the opposite object side), (2) object and body (e.g. rotating subject and hand 180°), or (3) both (e.g. rotating the subject 180°), subjects used the same, yet inappropriate digit placement and load force distribution, as those used prior to the rotation. Consequently, the compensatory moments were insufficient to prevent large object rolls. These findings suggest that representations of learned manipulation of objects with asymmetric mass distributions are specific to the body- and hand-reference frames in which they were learned.  相似文献   

16.
Mechanical properties of adherent cells were investigated using methods of engineering mechanics. The cytoskeleton (CSK) was modeled as a filamentous network and key mechanisms and corresponding molecular structures which determine cell elastic behavior were identified. Three models of the CSK were considered: open-cell foam networks, prestressed cable nets, and a tensegrity model as a special case of the latter. For each model, the modulus of elasticity (i.e. an index of resistance to small deformation) was given as a function of mechanical and geometrical properties of CSK filaments whose values were determined from the data in the literature. Quantitative predictions for the elastic modulus were compared with data obtained previously from mechanical tests on adherent cells. The open-cell foam model yielded the elastic modulus (10(3)-10(4)Pa) which was consistent with measurements which apply a large compressive stress to the cell. This suggests that bending of CSK filaments is the key mechanism for resisting large compression. The prestressed cable net and tensegrity model yielded much lower elastic moduli (10(1)-10(2)Pa) which were consistent with values determined from equilibrium measurements at low applied stress. This suggests that CSK prestress and architecture are the primary determinants of the cell elastic response. The tensegrity model revealed the possibility that buckling of microtubules of the CSK also contributed to cell elasticity.  相似文献   

17.

Background

It has been reported that participants judge an object to be closer after a stick has been used to touch it than after touching it with the hand. In this study we try to find out why this is so.

Methodology

We showed six participants a cylindrical object on a table. On separate trials (randomly intermixed) participants either estimated verbally how far the object is from their body or they touched a remembered location. Touching was done either with the hand or with a stick (in separate blocks). In three different sessions, participants touched either the object location or the location halfway to the object location. Verbal judgments were given either in centimeters or in terms of whether the object would be reachable with the hand. No differences in verbal distance judgments or touching responses were found between the blocks in which the stick or the hand was used.

Conclusion

Instead of finding out why the judged distance changes when using a tool, we found that using a stick does not necessarily alter judged distances or judgments about the reachability of objects.  相似文献   

18.
The visual angle that is projected by an object (e.g. a ball) on the retina depends on the object's size and distance. Without further information, however, the visual angle is ambiguous with respect to size and distance, because equal visual angles can be obtained from a big ball at a longer distance and a smaller one at a correspondingly shorter distance. Failure to recover the true 3D structure of the object (e.g. a ball's physical size) causing the ambiguous retinal image can lead to a timing error when catching the ball. Two opposing views are currently prevailing on how people resolve this ambiguity when estimating time to contact. One explanation challenges any inference about what causes the retinal image (i.e. the necessity to recover this 3D structure), and instead favors a direct analysis of optic flow. In contrast, the second view suggests that action timing could be rather based on obtaining an estimate of the 3D structure of the scene. With the latter, systematic errors will be predicted if our inference of the 3D structure fails to reveal the underlying cause of the retinal image. Here we show that hand closure in catching virtual balls is triggered by visual angle, using an assumption of a constant ball size. As a consequence of this assumption, hand closure starts when the ball is at similar distance across trials. From that distance on, the remaining arrival time, therefore, depends on ball's speed. In order to time the catch successfully, closing time was coupled with ball's speed during the motor phase. This strategy led to an increased precision in catching but at the cost of committing systematic errors.  相似文献   

19.
Jealousy in Dogs     
It is commonly assumed that jealousy is unique to humans, partially because of the complex cognitions often involved in this emotion. However, from a functional perspective, one might expect that an emotion that evolved to protect social bonds from interlopers might exist in other social species, particularly one as cognitively sophisticated as the dog. The current experiment adapted a paradigm from human infant studies to examine jealousy in domestic dogs. We found that dogs exhibited significantly more jealous behaviors (e.g., snapping, getting between the owner and object, pushing/touching the object/owner) when their owners displayed affectionate behaviors towards what appeared to be another dog as compared to nonsocial objects. These results lend support to the hypothesis that jealousy has some “primordial” form that exists in human infants and in at least one other social species besides humans.  相似文献   

20.
Men and women differ in their ability to solve spatial problems. There are two possible proximate explanations for this: (i) men and women differ in the kind (and value) of information they use and/or (ii) their cognitive abilities differ with respect to spatial problems. Using a simple computerized task which could be solved either by choosing an object based on what it looked like, or by its location, we found that the women relied on the object's visual features to solve the task, while the men used both visual and location information. There were no differences between the sexes in memory for the visual features of the objects, but women were poorer than men at remembering the locations of objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号