首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burkholderia cepacia lipase was immobilized in silicates forming from n-butyl-substituted precursors within a silica monolith from methyl-substituted precursors. The resultant preparation gave about 12 times higher rates of transesterification of (R, S)-1-phenylethanol with vinyl acetate and an approximately two-fold increase in the enantioselectivity toward (R)-1-phenylethanol, as compared to a non-immobilized counterpart. The highest enzymatic activity and enantioselectivity (reaching 250) were found at a low water activity of 0.11. The continuous-flow kinetic resolution of (R, S)-1-phenylethanol was successfully conducted using lipase-immobilized silica monolith micro-bioreactors with various inside diameters ranging from 0.25 to 1.6 mm. The reactor performance during continuous operation was consistent with the prediction from the batch reactor. A steady state conversion of 40% and enantiomeric excess more than 98% were maintained over a time period of 15 days.  相似文献   

2.
We developed a highly efficient bioreactor loaded with a lipase-immobilized non-shrinkable silica monolith by adopting a two-step sol–gel method, i.e., preparing a methyltrimethoxysilane (MTMS)-based silica monolith followed by coating of the latter with more hydrophobic alkyl-substituted silicates that entrapped lipase. We applied this type of bioreactor to the production of fatty acid methyl esters through methanolysis of rapeseed oil in n-hexane by Rhizopus oryzae lipase. As the result of screening alkyltrimethoxysilanes mixed with tetramethoxysilane (TMOS) during sol–gel coating, propyltrimethoxysilane (PTMS) gave the best performance, and the lipase immobilized therein exhibited ca. 10 times higher activity than non-immobilized lipase powder. The amount of the PTMS-based silicates with which the MTMS-based silica monolith was coated was optimized by adjusting the molar ratio of silanes (mixture of PTMS and TMOS at 4:1) to 100 mol of water. Conversion rate was highest at the molar ratio of 0.4 mol silanes to 100 mol of water, which was ca. 10 times higher than that with lipase deposited on the MTMS-based silica monolith. Conversion rate was approximately 1.5 times higher in the flow-through monolith bioreactor than in the batch slurry reactor.  相似文献   

3.
Nonporous and mesoporous silica-coated magnetite cluster nanocomposites particles were fabricated with various silica structures in order to develop a desired carrier for the lipase immobilization and subsequent biodiesel production. Lipase from Pseudomonas cepacia was covalently bound to the amino-functionalized particles using glutaraldehyde as a coupling agent. The hybrid systems that were obtained exhibited high stability and easy recovery regardless of the silica structure, following the application of an external magnetic field. The immobilized lipases were then used as the recoverable biocatalyst in a transesterification reaction to convert the soybean oil to biodiesel with methanol. Enzyme immobilization led to higher stabilities and conversion values as compared to what was obtained by the free enzyme. Furthermore, the silica structure had a significant effect on stability and catalytic performance of immobilized enzymes. In examining the reusability of the biocatalysts, the immobilized lipases still retained approximately 55% of their initial conversion capability following 5 times of reuse.  相似文献   

4.
In this study, non-edible Jatropha oil and postcooking waste soybean oil were utilized for enzymatic biodiesel production. The process was optimized by using a statistical method. In addition, a novel continuous process using co-immobilized Rhizopus oryzae and Candida rugosa lipases was developed. The optimum conditions for the batch process were determined to be a reaction temperature of 45oC, an agitation speed of 250 rpm, 10 wt% of water, and 20% of immobilized lipases. A conversion of about 98% at 4 h could be achieved for biodiesel production using Jatropha oil, while a conversion of about 97% at 4 h was achieved from waste soybean oil. A packed bed reactor charged with co-immobilized lipases was employed for continuous biodiesel production from Jatropha and waste soybean oil. The reactor consisted of a jacketed glass column (ID 25 mm × 130 mm), in which a temperature of 45°C was maintained by water circulation. A maximum conversion of about 80% in 24 h at a flow rate of 0.8 mL/ min was achieved with the continuous process, whereas in the two-stage continuous process, a conversion of about 90% in 72 h was attained at a flow rate of 0.1 mL/min.  相似文献   

5.

Background  

Transesterification of Jatropha oil was carried out in t-butanol solvent using immobilized lipase from Enterobacter aerogenes. The presence of t-butanol significantly reduced the negative effects caused by both methanol and glycerol. The effects of various reaction parameters on transesterification of Jatropha oil were studied.  相似文献   

6.
The effectiveness of lipase immobilized on ceramic beads, in the production of biodiesel from simulated waste cooking oil in organic solvent system, was compared to that of free lipase. Experimental determination of the effect of concentrations of methanol on the rate of the enzymatic transesterification was experimentally determined. In addition, the effectiveness of lipases from bacterial and yeast sources for biodiesel production from simulated waste cooking oil was compared. A kinetic model was developed to describe the system, taking into consideration the mass transfer resistances of the reactants. Inhibition effects by both substrates on the interfacial reaction were also considered. The experimental results were used to determine the kinetic parameters of the proposed model and to determine the effect of mass transfer. On the other hand, it was shown that biodieasel can be produced in considerable amounts, with yield reaching 40%, in absence of organic solvent using immobilized lipase from P. cepacia on ceramic beads.  相似文献   

7.
Commercially available steapsin lipase was immobilized on macroporous polymer beads (IB-350) and further investigated for biodiesel production under solvent free conditions. The fatty acid methyl ester (biodiesel) synthesis was carried out by the methanolysis of fresh and used cooking sunflower oil. The enzymatic reaction for biodiesel synthesis was optimized with various reaction parameters and the obtained reaction conditions were 1: 6 molar ratio (oil: methanol), 50 mg biocatalyst and 20% water content at 45°C for 48 h under solvent free conditions. It was observed that 94% of biodiesel was produced under the optimized reaction conditions. The four step addition of methanol at the interval of 12 h was found to be more effective. Moreover the biocatalyst was effectively reused for four consecutive recycles and was appreciably stable for 90 days. The results obtained highlight potential of immobilized steapsin lipase for biodiesel production.  相似文献   

8.
Two screenings of commercial lipases were performed to find a lipase with superior performance for the integrated production of biodiesel and monoglycerides. The first screening was carried out under alcoholysis conditions using ethanol as acyl acceptor to convert triglycerides to their corresponding ethyl esters (biodiesel). The second screening was performed under glycerolysis conditions to yield monoglycerides (MG). All lipases were immobilized on silica–PVA composite by covalent immobilization. The assays were performed using babassu oil and alcohols (ethanol or glycerol) in solvent free systems. For both substrates, lipase from Burkholderia cepacia (lipase PS) was found to be the most suitable enzyme to attain satisfactory yields. To further improve the process, the Response Surface Methodology (RSM) was used to determine the optima operating conditions for each biotransformation. For biodiesel production, the highest transesterification yield (>98%) was achieved within 48 h reaction at 39 °C using an oil-to-ethanol molar ratio of 1:7. For MG production, optima conditions corresponded to oil-to-glycerol molar ratio of 1:15 at 55 °C, yielding 25 wt.% MG in 6 h reaction. These results show the potential of B. cepacia lipase to catalyze both reactions and the feasibility to consider an integrated approach for biodiesel and MG production.  相似文献   

9.
Despite the already established route of chemically catalyzed transesterification reaction in biodiesel production, due to some of its shortcomings, biocatalysts such as lipases present a vital alternative. Namely, it was noticed that one of the key shortcomings for the optimization of the enzyme catalyzed biodiesel synthesis process is the information on the lipase activity in the reaction mixture. In addition to making optimization difficult, it also makes it impossible to compare the results of the independent research. This article shows how lipase intended for use in biodiesel synthesis can be easily and accurately characterized and what is the enzyme concentration that enables achievement of the desired level of fatty acid methyl esters (FAME) in the final product mixture. Therefore, this study investigated the effect of two different activity loads of Burkholderia cepacia lipase on the biodiesel synthesis varying the pH and temperature optimal for lipase activity. The optimal lipase pH and temperature were determined by two different enzyme assays: spectrophotometric and titrimetric. The B. cepacia lipase pH optimum differentiated between assays, while the lipase optimally hydrolyzed substrates at 50°C. The analysis of FAME during 24 hr of biodiesel synthesis, at two different enzyme concentrations, pH 7, 8, and 10, and using two different buffers, revealed that the transesterification reaction at optimal pH, 1 hr reaction time and lipase activity load of 250 U per gram of reaction mixture was sufficient to produce more than 99% FAME.  相似文献   

10.
黄晶  袁丽红  孙镇 《微生物学报》2011,51(4):488-494
[目的]分离筛选具有脂解麻疯树油能力的脂肪酶产生菌株,为以麻疯树油为原料酶法生产生物柴油奠定基础.[方法]以麻疯树油为唯一碳源,从麻疯树种子粉末处理过的土壤中分离筛选出1株具有脂解疯树油能力的脂肪酶产生菌,考察该菌株及其脂肪酶对有机溶剂耐受性以及脂肪酶催化酯化和转酯反应的能力,并通过生理生化特征和16S rDNA序列分...  相似文献   

11.

Purpose

Several factors contribute to the current increased focus on alternative fuels such as biodiesel, including an increasing awareness of the environmental impact of petrochemical (PC) oil products such as PC diesel, the continuously increasing price of PC oil, and the depletion of PC oil. For these reasons, the European Union has enacted a directive requiring each member state to ensure that the share of energy from renewable sources in transport be at least 10 % of the final consumption of energy by 2020 (The European Parliament and the Council 2009). This LCA study assesses the specific environmental impacts from the production and use of biodiesel as it is today (real-time), based on rapeseed oil and different types of alcohols, and using technologies that are currently available or will be available shortly. Different options are evaluated for the environmental improvement of production methods. The modeling of the LCA is based on a specific Danish biodiesel production facility.

Methods

The functional unit is “1,000 km transportation for a standard passenger car.” All relevant process stages are included, such as rapeseed production including carbon sequestration and N2O balances, and transportation of products used in the life cycle of biodiesel. System expansion has been used to handle allocation issues.

Results and discussion

The climate change potential from the production and use of biodiesel today is 57 kg CO2-eq/1,000 km, while PC diesel is 214 kg CO2-eq/1,000 km. Options for improvement include the increased use of residual straw from rapeseed fields for combustion in a power plant where carbon sequestration is considered, and a change in transesterification from a conventional process to an enzymatic process when using bioethanol instead of PC methanol. This research also evaluates results for land use, respiratory inorganics potential, human toxicity (carc) potential, ecotoxicity (freshwater) potential, and aquatic eutrophication (N) potential. Different sources for uncertainty are evaluated, and the largest drivers for uncertainty are the assumptions embedded into the substitution effects. The results presented should not be interpreted as a blueprint for the increased production of biodiesel but rather as a benchmarking point for the present, actual impact in a well-to-wheels perspective of biodiesel, with options for improving production and use.

Conclusions

Based on this analysis, we recommend investigating additional options and incentives regarding the increased use of rape straw, particularly considering the carbon sequestration issues (from the perspective of potential climate change) of using bioalcohol instead of PC alcohol for the transesterification process.  相似文献   

12.

Background

Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid) which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission.

Results

The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2) is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s) through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78%) and a corresponding reduction in polyunsaturated fatty acids (< 3%) in its seed oil. The control Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60) in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic Jatropha that will help reduce public concerns for environmental issues surrounding genetically modified plants.

Conclusion

In this study we produced seed-specific JcFAD2-1 RNA interference transgenic Jatropha without a selectable marker. We successfully increased the proportion of oleic acid versus linoleic in Jatropha through genetic engineering, enhancing the quality of its oil.  相似文献   

13.
Biodiesel has been greatly interested as an alternative fuel and is produced by a transesterification reaction of oil with alcohol. Recently, microbial lipases have been used for biodiesel production. Among the microbial lipase, immobilized Candida antartica lipase B (CALB) is the most widely used. However, CALB is unstable and shows low catalytic efficiency in the reaction media because the reaction media contains a high concentration of methanol and the lipase is also inhibited by the by-product glycerol. In this study, to overcome these limitations, we developed an amphiphilic matrix to immobilize CALB. The immobilized lipase in an amphiphilic matrix with 80% ethyltrimethoxysilane (ETMS) in tetramethoxysilane (TMOS) and pretreated with oil showed the highest specific activity and biodiesel conversion ratio; about 90% biodiesel conversion in 24 h at an initial molar ratio of 1: 1 (oil: methanol) with stepwise methanol feeding in order to adjust the net molar ratio to be 1: 3.  相似文献   

14.
Lipase-catalyzed alcoholysis of soybean oil deodorizer distillate (SODD) for biodiesel production was studied. During this system both free fatty acids and glycerides could be converted to biodiesel simultaneously. tert-Butanol has been adopted as the reaction medium, in which both the negative effects caused by excessive methanol and by-product glycerol could be eliminated completely. There was no obvious loss in lipase activity even after being repeatedly used for 120 cycles. Fine-pored silica gel and 3 Å molecular were found to be effective to control by-product water concentration and much higher biodiesel yield could be achieved with those adsorbents present in the reaction system. The highest biodiesel yield of 97% could be achieved with 3 Å molecular sieve as the adsorbent.  相似文献   

15.
The feasibility of using the commercial immobilized lipase from Candida antarctica (Novozyme 435) to synthesize biodiesel from sunflower oil in a solvent-free system has been proved. Using methanol as an acyl acceptor and the response surface methodology as an optimization technique, the optimal conditions for the transesterification has been found to be: 45 oC, 3% of enzyme based on oil weight, 3:1 methanol to oil molar ratio and with no added water in the system. Under these conditions, >99% of oil conversion to fatty acid methyl ester (FAME) has been achieved after 50 h of reaction, but the activity of the immobilized lipase decreased markedly over the course of repeated runs. In order to improve the enzyme stability, several alternative acyl acceptors have been tested for biodiesel production under solvent-free conditions. The use of methyl acetate seems to be of great interest, resulting in high FAME yield (95.65%) and increasing the half-life of the immobilized lipase by about 20.1 times as compared to methanol. The reaction has also been verified in the industrially feasible reaction system including both a batch stirred tank reactor and a packed bed reactor. Although satisfactory performance in the batch stirred tank reactor has been achieved, the kinetics in a packed bed reactor system seems to have a slightly better profile (93.6 ± 3.75% FAME yield after 8–10 h), corresponding to the volumetric productivity of 48.5 g/(dm3 h). The packed bed reactor has operated for up to 72 h with almost no loss in productivity, implying that the proposed process and the immobilized system could provide a promising solution for the biodiesel synthesis at the industrial scale.  相似文献   

16.
Enzymatic lipase transesterification of palm oil to biodiesel in a packed‐bed reactor (PBR) using a novel strain of the fungus Aspergillus niger, immobilized within polyurethane biomass support particles (BSPs), was investigated. A three‐step addition of methanol was used to reduce lipase inhibition by immiscible methanol. The influence of water content and PBR flow rate was investigated. FAME yield was enhanced with an increase of PBR flow rate in the range of 0.15–30 L h?1, where inefficient mixing of the reaction mixture at lower flow rates resulted in low conversion rates i.e. 69% after 72‐h reaction. Adding the third mole equivalent of methanol resulted in lipase inhibition due to methanol migration into the accumulated glycerol layer. Glutaraldehyde (GA) solution (0.5 vol.%) was used to stabilize lipase activity, which led to a high FAME yield (>90%) in the PBR after 72‐h of reaction time at a flow rate of 15 L h?1, and a water content of 15%. Moreover, a high conversion rate (>85%) was maintained after four palm oil batch conversion cycles in the PBR. In contrast, lipase activity of non‐GA‐treated cells decreased with each PBR batch cycle, where only 70% FAME was produced after the forth PBR cycle. Transesterification of palm oil in a PBR system using BSPs‐immobilized A. niger as a whole‐cell biocatalyst is a viable process for enzymatic biodiesel production.  相似文献   

17.
Rhizopus oryzae NBRC 4697 was selected from among promising candidates as a biocatalyst for biodiesel production. This microorganism was immobilized on to polyurethane foam coated with activated carbon for reuse, and, for biodiesel production. Vacuum drying of the immobilized cells was found to be more efficient than natural or freeze-drying processes. Although the immobilized cells were severely inhibited by a molar ratio of methanol to soybean oil in excess of 2.0, stepwise methanol addition (3 aliquots at 24-h feeding intervals) significantly prevented methanol inhibition. A packed-bed bioreactor (PBB) containing the immobilized whole cell biocatalyst was then operated under circulating batch mode. Stepwise methanol feeding was used to mitigate methanol inhibition of the immobilized cells in the PBB. An increase in the feeding rate (circulating rate) of the reaction mixture barely affected biodiesel production, while an increase in the packing volume of the immobilized cells enhanced biodiesel production noticeably. Finally, repeated circulating batch operation of the PBB was carried out for five consecutive rounds without a noticeable decrease in the performance of the PBB for the three rounds.  相似文献   

18.
《Process Biochemistry》2007,42(3):409-414
The monoethyl esters of the long chain fatty acids (biodiesel) were prepared by alcoholysis of Jatropha oil, a non-edible oil, by a lipase. The process optimization consisted of (a) screening of various commercial lipase preparations, (b) pH tuning, (c) immobilization, (d) varying water content in the reaction media, (e) varying amount of enzyme used, and (f) varying temperature of the reaction. The best yield 98% (w/w) was obtained by using Pseudomonas cepacia lipase immobilized on celite at 50 °C in the presence of 4–5% (w/w) water in 8 h. It was found that yields were not affected if analytical grade alcohol was replaced by commercial grade alcohol. This biocatalyst could be used four times without loss of any activity.  相似文献   

19.
tert-Butanol, as a novel reaction medium, has been adopted for lipase-catalyzed transesterification of rapeseed oil for biodiesel production, with which both the negative effects caused by excessive methanol and by-product glycerol could be eliminated. Combined use of Lipozyme TL IM and Novozym 435 was proposed further to catalyze the methanolysis and the highest biodiesel yield of 95% could be achieved under the optimum conditions (tert-butanol/oil volume ratio 1:1; methanol/oil molar ratio 4:1; 3% Lipozyme TL IM and 1% Novozym 435 based on the oil weight; temperature 35 °C; 130 rpm, 12 h). There was no obvious loss in lipase activity even after being repeatedly used for 200 cycles with tert-butanol as the reaction medium. Furthermore, waste oil was also explored for biodiesel production and it has been found that lipase also showed good stability in this novel system.  相似文献   

20.
Lipase-catalyzed transesterification of soybean oil and methanol for biodiesel production in tert-amyl alcohol was investigated. The effects of different organic medium, molar ratio of substrate, reaction temperature, agitation speed, lipase dosage and water content on the total conversion were systematically analyzed. Under the optimal conditions identified (6 mL tert-amyl alcohol, three molar ratio of methanol to oil, 2% Novozym 435 lipase based on the soybean oil weight, temperature 40°C, 2% water content based on soybean oil weight, 150 rpm and 15 h), the highest biodiesel conversion yield of 97% was obtained. With tert-amyl alcohol as the reaction medium, the negative effects caused by excessive molar ratio of methanol to oil and the by-product glycerol could be reduced. Furthermore, there was no evident loss in the lipase activity even after being repeatedly used for more than 150 runs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号