首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorophyllase extract from Phaeodactylum tricornutum was immobilized by physical adsorption on DEAE-cellulose and silica gel as well as by covalent binding on Eupergit C, Eupergit C250L, Eupergit C/ethylenediamine (EDA) and Eupergit C250L/EDA. Although the highest immobilization yield (83-93%) and efficiency (51-53%) were obtained when chlorophyllase extract was immobilized on DEAE-cellulose and silica gel, there was no improvement in the thermal stability of chlorophyllase as compared to that of the free one. The immobilization of chlorophyllase extract on Eupergit C250L/EDA resulted by a high recovery of enzymatic activity, with an immobilization efficiency of 44%, and promoted a higher stabilization of chlorophyllase (four times) in the aqueous/miscible organic solvent medium. On the other hand, the inhibitory effect of refined bleached deodorized (RBD) canola oil was reduced by immobilization of chlorophyllase extract onto silica gel as compared to those obtained with other enzyme preparations. However, the re-cycled chlorophyllase extract immobilized on Eupergit C250L/EDA retained more than 75% of its initial enzyme activity after 6 cycles, whereas that immobilized on silica gel was completely inactivated. The highest catalytic efficiency, for both free and immobilized chlorophyllase on Eupergit C250L/EDA, was obtained in the ternary micellar system as compared to the aqueous/miscible organic solvent and biphasic media.  相似文献   

2.
A novel method of enzyme immobilization using a low molecular weight prepolymer of tri-functional aziridines which can immobilize enzymes both by covalent attachment and entrapment within a gel matrix is described. The enzymes are immobilized on a solid support and exhibit an excellent retention of enzymatic activity. The immobilization procedure is essentially a single step process which can be easily performed at room temperature or 4 degrees C in either aqueous solution or in an inert organic solvent. The polyaziridines used in the immobilization are nontoxic, available in bulk at low cost and completely miscible with water and many organic solvents, thus providing one of the most satisfactory methods of immobilization available.  相似文献   

3.
Lipases from six different sources were immobilized on Celite and five types of salt. The transesterification activities in hexane for lipases immobilized on EDTA-Na2 increased by 463% for the lipase from Candida rugosa (CRL), 2700% for the lipase from Candida sp. (CSL) and 1215% for the lipase from Pseudomonas sp. (PSL), compared to the salt-free enzyme. With 0.5% sucrose for CRL or 1% sorbitol for PSL as the lyoprotectant during lyophilization process, transesterification activity increased by 100% and 13%, respectively, compared to the immobilized enzyme on EDTA-Na2 without lyoprotectant.  相似文献   

4.
The mesoporous silica SBA-15 was modified by carboxyl-functionalized ionic liquid (COOH-IL-SBA). The prepared support was used to immobilize porcine pancreatic lipase (PPL) by physical adsorption (PPL-COOH-IL-SBA) and covalent attachment (PPL-CON-IL-SBA). Enzymatic properties of the immobilized PPL were investigated in the triacetin hydrolysis reaction. It was found that carboxyl functionalized ionic liquid modification of the support surface was an effective method to improve the properties of immobilized PPL. Incorporating into the functionalized SBA-15 made PPL more resistant to temperature and pH changes, compared with PPL immobilized on parent SBA-15 (PPL-SBA). Especially, after the covalent attachment to a functionalized support, the stability of PPL was improved obviously, which retained 81.25% and 52.50% of the original activity after incubation for 20 days and four times recycling, respectively, whereas PPL-SBA exhibited only 58.80% and 27.78% of the original activity under the same conditions. In addition, physical and chemical properties of the supports and immobilized PPL were characterized by small-angle X-ray powder diffraction (SAXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), nitrogen adsorption, nuclear magnetic resonance (NMR) and thermogravimetry (TG). The images and data confirmed chemical modification in SBA-15 and PPL immobilization on the tested support.  相似文献   

5.
Lipases from two different sources Candida rugosa (CRL) and Burkholderia cepacia (BCL) were formulated as enzyme precipitated and rinsed with organic solvents, organic solvent rinsed enzyme preparation, cross-linked enzyme aggregates (CLEAs) and protein coated micro-crystals (PCMCs). These various enzyme formulates were evaluated for the kinetic resolution of (+/-)-1-phenylethanol in ionic liquid [Bmim][PF(6)] by transesterification with vinyl acetate. Of all the enzyme forms evaluated EPRP and PCMC in the case of CRL showed the best results with 26 % (E value=153) and 53% (E value=79) conversion, respectively, at 35 degrees C in 24h. Carrying out this conversion with PCMC at lower temperature of 25 degrees C further improved the E value to 453 (with 44% conversion in 12h). For BCL the acetone-rinsed enzyme preparation (AREP), CLEA and PCMC performed equally well with % conversion of 50 and 99 ee(p) (%) (E value >1000) in just 2h, whereas, the free lipase gave only 8% conversion.  相似文献   

6.
Magnetic oleic-acid-coated Fe?O? nanoparticles were first introduced into 1, 1-diphenylethylene (DPE)-controlled radical polymerization system to prepare superparamagnetic microspheres for enzyme immobilization by two steps of polymerization. In the presence of DPE, glycidyl methacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl trimethyl ammonium chloride with charge were selected as copolymering monomers based on their reactive functional group and excellent biocompatibility which were suitable for immobilization of Candida rugosa lipase (CRL). The resulting magnetic microspheres were characterized by means of scanning electron microscope, Fourier transform infrared spectrum, thermogravimetric analysis and vibrating sample magnetometry. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis SDS-PAGE analysis was also conducted to demonstrate whether CRL is covalently immobilized or only physically adsorbed. The results indicated that the polymerization was successfully carried out, and lipase was immobilized on the magnetic microspheres through ionic adsorption and covalent binding under mild conditions. The immobilized lipase exhibited high activity recovery (69.7%), better resistance to pH and temperature inactivation in aqueous phase, as well as superior reusability in nonaqueous phase. The data showed that the resulting carrier could hold an amphiphilic property.  相似文献   

7.
An organic–inorganic nanocomposite which combined mesoporous silica SBA-15 and chitosan using a carboxyl functionalized ionic liquid as the bridging agent (SBA@CS) was successfully fabricated, and was used to immobilize porcine pancreas lipase (PPL) by physical adsorption, cross-linking and metal–organic coordination, respectively. The as-prepared carriers were characterized by scanning electron microscopy, Fourier transform infrared and energy-dispersive X-ray spectroscopy. Compared with immobilization onto the pure mesoporous silicon material SBA-15, all the batches of PPL immobilized onto organic–inorganic nanocomposites showed higher activity, improved stability and reusability as well as better resistance to pH and temperature changes. Among the immobilized PPLs, immobilization based on Co2+ coordination (SBA@CS-Co-PPL) produced the best enzymatic properties. The maximum immobilization efficiency and specific activity of 79.6% and 1975.8 U g−1 were obtained with SBA@CS-Co, separately. More importantly, the activity of immobilized enzyme can still maintain 84.0% after 10 times of reuse. These results demonstrated that thus prepared organic–inorganic nanocomposite could be an ideal carrier for enzyme immobilization by metal–organic coordination.  相似文献   

8.
In this study porcine pancreatic lipase (PPL) was covalently immobilized on cross-linked polyvinyl alcohol (PVA) in organic media in the presence of fatty acid additives in order to improve its immobilized activity. The effects of fatty acid additions to the immobilization media were investigated choosing tributyrin hydrolysis in water and ester synthesis by immobilized PPL in n-hexane. Various fatty acids which are also the substrates of lipases in esterification reactions were used as active site protecting agents during the immobilization process in an organic solvent. The obtained results showed that covalent immobilization carried out in the presence of fatty acids as protective ligands improved the hydrolytic and esterification activity of immobilized enzyme. A remarkable increase in activity of the immobilized PPL was obtained when octanoic acid was used as an additive and the hydrolytic activity was increased from 5.2 to 19.2 μmol min−1 mg−1 as compared to the non-additive immobilization method. With the increase of hydrolytic activity of immobilized lipase in the presence of octanoic acid, in an analogous manner, the rate of esterification for the synthesis of butyl octanoate was also increased from 7.3 to 26.3 μmol min−1 g−1 immobilized protein using controlled thermodynamic water activities with saturated salt solutions. In addition, the immobilized PPL activity was maintained at levels representing 63% of its original activity value after 5 repeated uses. The proposed method could be adopted for a wide variety of other enzymes which have highly soluble substrates in organic solvent such as other lipases and esterases.  相似文献   

9.
Covalent immobilization of cyclodextrin glycosyltransferase on glyoxyl-agarose beads promotes a very high stabilization of the enzyme against any distorting agent (temperature, pH, organic solvents). For example, the optimized immobilized preparation preserves 90% of initial activity when incubated for 22 h in 30% ethanol at pH 7 and 40 degrees C. Other immobilized preparations (obtained via other immobilization protocols) exhibit less than 10% of activity after incubation under similar conditions. Optimized glyoxyl-agarose immobilized preparation expressed a high percentage of catalytic activity (70%). Immobilization using any technique prevents enzyme inactivation by air bubbles during strong stirring of the enzyme. Stabilization of the enzyme immobilized on glyoxyl-agarose is higher when using the highest activation degree (75 micromol of glyoxyl per milliliter of support) as well as when performing long enzyme-support incubation times (4 h) at room temperature. Multipoint covalent immobilization seems to be responsible for this very high stabilization associated to the immobilization process on highly activated glyoxyl-agarose. The stabilization of the enzyme against the inactivation by ethanol seems to be interesting to improve cyclodextrin production: ethanol strongly inhibits the enzymatic degradation of cyclodextrin while hardly affecting the cyclodextrin production rate of the immobilized-stabilized preparation.  相似文献   

10.
Porous silica particles (PSP) modified with different surface active groups were prepared for covalent immobilization of porcine pancreas lipase (PPL). Organosilanes combined with reactive end amino-group or epoxy-group were employed for the modification through silanization process. Polyethylenimine and long chain alkyl silane coupling agent were also used in the modification process. Several modification-immobilization strategies were performed, while good coupling yield could be achieved within the range of 86.2–158.2 mg of native PPL per gram of the carrier. Furthermore, at higher temperature, the resulting immobilized PPL (IPPL) could successfully perform the syntheses of polycaprolactone (PCL) and poly(5,5-dimethyl-1,3-dioxan-2-one) (PDTC) in ionic liquid medium. No polymers could be obtained catalyzed by native PPL, suggesting that IPPL showed much higher catalytic activity than native PPL. Effect of different treatments on the activity of IPPL also showed the long time high temperature stability in ionic liquid medium, contributing to a good combination of immobilization and ionic liquids effect. The catalytic activity of IPPL for polymerization was closely related to both the properties of immobilized enzyme and cyclic monomer. This work would be expected to highlight further careful design of immobilized enzyme for a wide range of application, especially in biodegradable polymers syntheses.  相似文献   

11.
Poly(gamma-glutamic acid) (gamma-PGA) is a material of polymer. Immobilization of Candida rugosa lipase (Lipase AY-30) by covalent binding on gamma-PGA led to a markedly improved performance of the enzyme. Response surface methodology (RSM) and 3-level-3-factor fractional factorial design were employed to evaluate the effects of immobilization parameters, such as immobilization time (2-6h), immobilization temperature (0-26 degrees C), and enzyme/support ratio (0.1-0.5, w/w). Based on the analysis of ridge max, the optimum immobilization conditions were as follows: immobilization time 2.3h, immobilization temperature 13.3 degrees C, and enzyme/support ratio 0.41 (w/w); the highest lipase activity obtained was 1196 U/mg-protein.  相似文献   

12.
The covalent immobilization of yeast invertase with glutaraldehyde at activated carbon, modified preliminarily by urea and dimethyl formamide treatment, has been established. Some physicochemical properties of the immobilized and native enzyme in water and water-organic solutions have been studied. Hydrolytic, as well as transferase enzyme characteristics have changed after immobilization. The optimal conditions for hydrolytic and transferase activity of immobilized invertase are pH 6.0 and 7.0, respectively. The optimum temperature for the immobilized enzyme is 30°C. The conversion degree of isoamyl alcohol depends on the substrate and enzyme concentrations in medium, holdup time and organic phase quantity in the reaction medium.  相似文献   

13.
In our previous work, a method of pretreating lipase was developed to prevent loss of its activity during covalent immobilization. In this study, Rhizopus oryzae lipase was pretreated before immobilization and then immobilized on a silica gel surface. The effects of the various materials and conditions used in the pretreatment stage on the activity of immobilized lipase were investigated. Immobilized lipase pretreated with 0.1% of soybean oil had better activity than those pretreated with other materials. The optimal temperature, agitation speed, and pretreating time for lipase pretreatment were determined to be 40 degrees C, 200 rpm, and 45 min, respectively. The activity of immobilized soybean oil pretreated lipase was 630 U/g matrix, which is 20 times higher than that of immobilized non-pretreated lipase. In addition, immobilized lipase activity was maintained at levels exceeding 90% of its original activity after 10 reuses.  相似文献   

14.
The present work is focused on efficient immobilization of polygalacturonase on polyethylene matrix, followed by its application in apple juice clarification. Immobilization of polygalacturonase on activated polyethylene and its use in apple juice clarification was not reported so far. Aspergillus niger Van Tieghem (MTCC 3323) produced polygalacturonase when grown in modified Riviere's medium containing pectin as single carbon source by fed-batch culture. The enzyme was precipitated with ethanol and purified by gel filtration chromatography (Sephacryl S-100) and immobilized onto glutaraldehyde-activated polyethylene. The method is very simple and time saving for enzyme immobilization. Various characteristics of immobilized enzyme such as optimum reaction temperature and pH, temperature and pH stability, binding kinetics, efficiency of binding, reusability and metal ion effect on immobilized enzymes were evaluated in comparison to the free enzyme. Both the free and immobilized enzyme showed maximum activity at a temperature of 45 degrees C and pH 4.8. Maximum binding efficiency was 38%. The immobilized enzyme was reusable for 3 cycles with 50% loss of activity after the third cycle. Twenty-four U of immobilized enzyme at 45 degrees C and 1 h incubation time increased the transmittance of the apple juice by about 55% at 650 nm. The immobilized enzyme can be of industrial advantage in terms of sturdiness, availability, inertness, low price, reusability and temperature stability.  相似文献   

15.
Candida rugosa lipase (CRL) is one of the most widely used lipases. To enhance the catalytic abilities of CRL in both aqueous and non-aqueous phases, hollow silica microspheres (HSMSs) with a pore size of 18.07 nm were used as an immobilization support, and aldehydecontaining dextrans were employed to further cross-link the adsorbed CRL. In the experimental ranges examined, the loading amount of lipase linearly increased to 171 ± 3.4 mgprotein/gsupport with the CRL concentration and all the adsorption equilibriums were reached within 30 min. After simple cross-linking, the tolerance to pH 4.0 ~ 8.0 as well as the thermal stability of immobilized CRL at 40 ~ 80°C were both substantially increased, and 82 ± 2.1% activity remaining after the sixth reuse. The immobilized CRL was successfully applied to the resolution of racemic ibuprofen in non-aqueous phase. The initial reaction rate increased by 1.4- and 3.6-fold compared with the rates of adsorbed and native lipases, respectively. Furthermore, the R-ibuprofen was obtained at ee > 93%, and the enantiomeric ratio reached E > 140 at the conversion of 50 ± 1.5% within 48 h.  相似文献   

16.
Yücel Y 《Bioresource technology》2011,102(4):3977-3980
In the present work, microbial lipase from Thermomyces lanuginosus was immobilized by covalent binding onto olive pomace. Immobilized support material used to produce biodiesel with pomace oil and methanol. The properties of the support and immobilized derivative were evaluated by scanning electron microscopy (SEM). The maximum immobilization of T. lanuginosus was obtained as 18.67 mg/g support and the highest specific activity was 10.31 U/mg protein. The properties of immobilized lipase were studied. The effects of protein concentration, pH and buffer concentration on the immobilization and lipase activity were investigated. Biodiesel production using the immobilized lipase was realized by a three-step addition of methanol to avoid strong substrate inhibition. Under the optimized conditions, the maximum biodiesel yield was 93% at 25 °C in 24 h reaction. The immobilized enzyme retained its activity during the 10 repeated batch reactions.  相似文献   

17.
Kahveci D  Xu X 《Biotechnology letters》2011,33(10):2065-2071
Candida rugosa lipase (CRL) and Candida antarctica lipase A (CALA) with improved activity and selectivity were prepared for use in organic solvent media. CRL bioimprinted with fatty acids exhibited eightfold enhanced transesterification activity in hexane. Combination of bioimprinting and coating with lecithin or with immobilization did not improve the activity further. CALA was immobilized with and without bioimprinting, none of which improved the activity. All modified lipases were tested for selective ethanolysis of fish oil to concentrate omega-3 polyunsaturated fatty acids (PUFA). None of the preparations, except the immobilized ones catalysed ethanolysis. Immobilized CRL-catalyzed ethanolysis giving 27% (v/v) ethyl esters (EE) in 48 h, of which 43 mol% was oleic acid but no PUFA was detected in the EE fraction. Fatty acid selectivity of CALA was significantly improved by immobilization combined with bioimprinting, resulting in 5.5-fold lower omega-3 PUFA in EE.  相似文献   

18.
Dextransucrase from Leuconostoc mesenteroides B-512F was immobilized on epoxy-activated acrylic polymers with different textural properties (Eupergit C and Eupergit C 250L). Prior to immobilization, dextransucrase was treated with dextranase to remove the dextran layer covering the enzyme surface, thus increasing the accessibility of its reactive groups to the epoxide centers of the support. Elimination of 99% of the initial carbohydrate content was determined by the anthrone method. To prevent enzyme inactivation, the immobilization was carried out at pH 5.4, at which the coupling to the support took place through the carboxylic groups of the enzyme. The effects of the amount (mg) of dextransucrase added per gram of support (from 0.2:1 to 30:1), temperature and contact time were studied. Maximum activity recovery of 22% was achieved using Eupergit C 250L. Using this macroporous support, the maximum specific activity (710 U/g biocatalyst) was significantly higher than that obtained with the less porous Eupergit C (226 U/g biocatalyst). The dextransucrase immobilized on Eupergit C 250L showed similar optimal temperature (30 degrees C) and pH (5-6) compared with the native enzyme. In contrast, a notable stabilization effect at 30 degrees C was observed as a consequence of immobilization. After a fast partial inactivation, the dextransucrase immobilized on Eupergit C 250L maintained more than 40% of the initial activity over the following 2 days. The features of this immobilized system are very attractive for its application in batch and fixed-bed bioreactors.  相似文献   

19.
The covalent immobilization of bovine liver catalase (CAT) on to florisil via glutaraldehyde was investigated. Optimum immobilization pH and temperature were determined as pH 6.0, 10 degrees C respectively, while the amount of initial CAT per g of carrier and immobilization time was determined as 5 mg g(-1) and 120 min, respectively. The Vmax values for free and immobilized CAT were found to be 1.7 x 10(5) and 2.0 x 10(4) micromol H2O2 min(-1) mg protein(-1), respectively, whereas KM values were 33.3 mM and 1722.0 mM respectively. Operational stability was determined by using a stirred batch-type column reactor. Immobilized CAT retained about 40% of its initial activity after 50 uses. It showed higher storage stability than free CAT at 4 degrees C and 25 degrees C. Its storage stability increased with increasing relative humidity (RH) from 0 to 20% of the medium. The highest storage stability was obtained in 20% RH, however, further increase in RH from 40 to 100% significantly decreased the storage stability.  相似文献   

20.
Endo-polygalacturonase (endo-PG) was immobilized on a wide range of natural and synthetic macromolecular supports and their modified derivatives representing many chemical classes, including esters, amides, phenols, alkyl- and arylamines, and carboxyl derivatives. The immobilization entailed methods of adsorption alone as well as covalent bond formation using glutaraldehyde or carbodiimide or via the diazo-coupling reaction. The most promising system proved to be immobilization on trimalehylchitosan (TMC) via adsorption followed by treatment with glutaraldehyde (GA). The binding capacity of the support is on the order of 13,000 IU/g, half of which is active. Various properties of immobilized endo-PG were evaluated. The optimum pH of the enzyme shifted to the alkaline side. The relative catalytic activity was considerably high even at room temperature and remained so above 70 degrees C. The thermal stability at pH 3-4 was notably improved by immobilization, the half-time doubling. Finally, the apparent K(m) was greater for immobilized endo-PG than for native enzyme, while the V(max) was smaller for the immobilized enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号