首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With altitude acclimatization, blood hemoglobin concentration increases while plasma volume (PV) and maximal cardiac output (Qmax) decrease. This investigation aimed to determine whether reduction of Qmax at altitude is due to low circulating blood volume (BV). Eight Danish lowlanders (3 females, 5 males: age 24.0 +/- 0.6 yr; mean +/- SE) performed submaximal and maximal exercise on a cycle ergometer after 9 wk at 5,260 m altitude (Mt. Chacaltaya, Bolivia). This was done first with BV resulting from acclimatization (BV = 5.40 +/- 0.39 liters) and again 2-4 days later, 1 h after PV expansion with 1 liter of 6% dextran 70 (BV = 6.32 +/- 0.34 liters). PV expansion had no effect on Qmax, maximal O2 consumption (VO2), and exercise capacity. Despite maximal systemic O2 transport being reduced 19% due to hemodilution after PV expansion, whole body VO2 was maintained by greater systemic O2 extraction (P < 0.05). Leg blood flow was elevated (P < 0.05) in hypervolemic conditions, which compensated for hemodilution resulting in similar leg O2 delivery and leg VO2 during exercise regardless of PV. Pulmonary ventilation, gas exchange, and acid-base balance were essentially unaffected by PV expansion. Sea level Qmax and exercise capacity were restored with hyperoxia at altitude independently of BV. Low BV is not a primary cause for reduction of Qmax at altitude when acclimatized. Furthermore, hemodilution caused by PV expansion at altitude is compensated for by increased systemic O2 extraction with similar peak muscular O2 delivery, such that maximal exercise capacity is unaffected.  相似文献   

2.
The objective of the present study was to examine the effects of preexercise NaHCO(3) administration to induce metabolic alkalosis on the arterial oxygenation in racehorses performing maximal exercise. Two sets of experiments, intravenous physiological saline and NaHCO(3) (250 mg/kg i.v.), were carried out on 13 healthy, sound Thoroughbred horses in random order, 7 days apart. Blood-gas variables were examined at rest and during incremental exercise, leading to 120 s of galloping at 14 m/s on a 3.5% uphill grade, which elicited maximal heart rate and induced pulmonary hemorrhage in all horses in both treatments. NaHCO(3) administration caused alkalosis and hemodilution in standing horses, but arterial O(2) tension and hemoglobin-O(2) saturation were unaffected. Thus NaHCO(3) administration caused a reduction in arterial O(2) content at rest, although the arterial-to-mixed venous blood O(2) content gradient was unaffected. During maximal exercise in both treatments, arterial hypoxemia, desaturation, hypercapnia, acidosis, hyperthermia, and hemoconcentration developed. Although the extent of exercise-induced arterial hypoxemia was similar, there was an attenuation of the desaturation of arterial hemoglobin in the NaHCO(3)-treated horses, which had higher arterial pH. Despite these observations, the arterial blood O(2) content of exercising horses was less in the NaHCO(3) experiments because of the hemodilution, and an attenuation of the exercise-induced expansion of the arterial-to-mixed venous blood O(2) content gradient was observed. It was concluded that preexercise NaHCO(3) administration does not affect the development and/or severity of arterial hypoxemia in Thoroughbreds performing short-term, high-intensity exercise.  相似文献   

3.
Reducing the hemolobin (Hb)-O(2) binding affinity facilitates O(2) unloading from Hb, potentially increasing tissue mitochondrial O(2) availability. We hypothesized that a reduction of Hb-O(2) affinity would increase O(2) extraction when tissues are O(2) supply dependent, reducing the threshold of critical O(2) delivery (DO(2 CRIT)). We investigated the effects of increased O(2) tension at which Hb is 50% saturated (P(50)) on systemic O(2) uptake (VO(2) (SYS)), DO(2 CRIT), lactate production, and acid-base balance during isovolemic hemodilution in conscious rats. After infusion of RSR13, an allosteric modifier of Hb, P(50) increased from 36.6 +/- 0.3 to 48.3 +/- 0.6 but remained unchanged at 35.4 +/- 0.8 mmHg after saline (control, CON). Arterial O(2) saturations were equivalent between RSR13 and saline groups, but venous PO(2) was higher and venous O(2) saturation was lower after RSR13. Convective O(2) delivery progressively declined during hemodilution reaching the DO(2 CRIT) at 3.4 +/- 0.8 ml x min(-1) x 100 g(-1) (CON) and 3.6 +/- 0.6 ml x min(-1) x 100 g(-1) (RSR13). At Hb of 8.1 g/l VO(2) (SYS) started to decrease (CON: 1.9 +/- 0.1; RSR13: 1.8 +/- 0.2 ml x min(-1) x 100 g(-1)) and fell to 0.8 +/- 0.2 (CON) and 0.7 +/- 0.2 ml x min(-1). 100 g(-1) (RSR13). Arterial lactate was lower in RSR13-treated than in control animals when animals were O(2) supply dependent. The decrease in base excess, arterial pH, and bicarbonate during O(2) supply dependence was significantly less after RSR13 than after saline. These findings demonstrate that during O(2) supply dependence caused by severe anemia, reducing Hb-O(2) binding affinity does not affect VO(2) (SYS) or DO(2 CRIT) but appears to have beneficial effects on oxidative metabolism and acid base balance.  相似文献   

4.
The influence of acute hypoxia (30 < or = PaO(2) < or = 100 mmHg) on the values of VO(2)max and parameters of oxygen transport in muscle working at VO(2)max was studied. We investigated muscle working under different values of blood flow F (60 < or = F < or = 120 ml/min per 100 g), blood pH (7.0-7.6), and different diffusion conditions. Investigations were performed on a computer model of O(2) delivery to and O(2) consumption in the working muscle. VO(2)max, PvO(2), pO(2)- and VO(2)-distribution in muscle fiber were calculated. It was shown that the greater the degree of arterial hypoxemia, the lower the muscle VO(2)max and blood pO(2) values. When working at VO(2)max, the average and minimal values of tissue pO(2) depend on PaO(2). The greater the blood flow through muscle, the greater the VO(2)max. However, with an increasing degree of arterial hypoxemia, the effect of F and blood pH on the value of VO(2)max is weakened. The diffusion conditions produced a powerful influence on the VO(2)max value. At reduced PaO(2) they are the most important limiting factors of O(2) supply to muscle working at maximal effort.  相似文献   

5.
Physiological studies of long-term cardiovascular adaptation to exercise require training regimens that give robust conditioning effects and adequate testing procedures to quantify the outcome. We developed a valid and reproducible protocol for measuring maximal oxygen uptake (VO(2 max)), which was reached at a 25 degrees inclination with a respiratory exchange ratio > 1.05 and blood lactate > 6 mmol/l. The effect of intensity-controlled aerobic endurance training was studied in adult female and male rats that ran 2 h/day, 5 days/wk, in intervals of 8 min at 85-90% of VO(2 max) and 2 min at 50-60% of VO(2 max), with adjustment of exercise level according to VO(2 max) every week. After 7 wk, the increase in VO(2 max) plateaued at 60-70% above sedentary controls. Ventricular weights and myocyte length were up 25-30% and 6-12%, respectively. Work economy, oxygen pulse, and heart rate were sufficiently changed to indicate substantial cardiovascular adaptation. The model mimics important human responses to training and could be used in future studies on cellular, molecular, and integrative mechanisms of improved cardiovascular function.  相似文献   

6.
7.
We inadvertently subjected a group of goats to 5 mo of cold exposure (mean minimum temperature less than -13 degrees C) during an experiment designed to examine the effects of training by daily running on one member of each sibling pair. During the three coldest months, the sedentary but cold-exposed goats experienced a 34% increase in maximal oxygen uptake (VO(2 max), P < 0.01) and a 29% increase in running speed at maximal (P < 0.05). When temperatures increased in the spring, both oxygen uptake and running speed decreased. We interpret these findings as evidence that cold is a sufficient stimulus to invoke the development of aerobic structures in muscle and that these structures subsequently can be utilized for the novel task of running. When the experiment was subsequently repeated without the cold exposure, running speed and VO(2 max) of trained animals increased less than in either group of cold-exposed animals. However, the cost of transport of these warm runners was lower than either group of cold-exposed animals (from 13-19%, P < 0. 0001). Thus, although aerobic capacity was increased with acclimation to severe winter weather, cold-acclimated goats operated with lower efficiency during locomotion.  相似文献   

8.
The purpose of this study was to determine differences in VO2max and metabolic variables between treadmill running and treadmill skating. This study also examined VO2max responses during a continuous skating treadmill protocol and a discontinuous skating treadmill protocol. Sixteen male high school hockey players, who had a mean age of 16 +/- 1 years and were of an above-average fitness level, participated in this study. All subjects completed 4 exercise trials: a 1-hour skating treadmill familiarization trial, a treadmill running trial, and 2 randomized skating treadmill trials. Minute ventilation (VE), oxygen consumption VO2), carbon dioxide production VCO2), respiratory exchange ratio (RER), and heart rate were averaged every 15 seconds up to VO2max for each exercise test. The results showed that there was a significant difference (P < 0.05) for VO2max (mL.kg.min) and maximal VCO2 (L.min) between the running treadmill protocol and discontinuous skating treadmill protocol. There was also a significant difference for maximal RER between the discontinuous and continuous skating treadmill protocol and between the discontinuous skating treadmill protocol and running treadmill protocol. In conclusion, the running treadmill elicited a greater VO2max (mL.kg.min) than the skating treadmill did, but when it comes to specificity of ice skating, the skating treadmill may be ideal. Also, there was no significant difference between the discontinuous and continuous skating treadmill protocols. Therefore, a continuous protocol is possible on the skating treadmill without compromising correct skating position and physiologic responses. However, the continuous skating treadmill protocol should undergo validation before other scientists, coaches, and strength and conditioning professionals can apply it correctly.  相似文献   

9.
Zhao B  Moochhala SM  Tham Sy  Lu J  Chia M  Byrne C  Hu Q  Lee LK 《Life sciences》2003,73(20):2625-2630
Several studies have shown that the angiotensin-converting enzyme (ACE) I allele is associated with enhanced physical performance. We investigated whether this phenomenon is observed in a cohort of 67 Chinese men in Singapore. Angiotensin-converting enzyme ID polymorphism was typed with PCR method and maximal oxygen uptake (VO(2max)) of the DD, ID, and II genotypes was compared. Analysis of covariance revealed that VO(2max) was significantly higher (p<0.05) for the DD genotype (57.86 +/- 3.5 ml.kg.(-1)min(-1)) versus the ID (50.58 +/- 1.80 ml.kg.(-1)min(-1)) or II (50.48 +/- 1.58 ml.kg.(-1) min(-1)) genotype. Our findings suggest that the ACE DD genotype in young adult Chinese males is associated with higher levels of VO(2max).  相似文献   

10.
Obesity is associated with a state of chronic low grade inflammation that plays an important role in the development of insulin resistance. Tumor progression locus 2 (Tpl2) is a serine/threonine mitogen activated protein kinase kinase kinase (MAP3K) involved in regulating responses to specific inflammatory stimuli. Here we have used mice lacking Tpl2 to examine its role in obesity-associated insulin resistance. Wild type (wt) and tpl2(-/-) mice accumulated comparable amounts of fat and lean mass when fed either a standard chow diet or two different high fat (HF) diets containing either 42% or 59% of energy content derived from fat. No differences in glucose tolerance were observed between wt and tpl2(-/-) mice on any of these diets. Insulin tolerance was similar on both standard chow and 42% HF diets, but was slightly impaired in tpl2(-/-) mice fed the 59% HFD. While gene expression markers of macrophage recruitment and inflammation were increased in the white adipose tissue of HF fed mice compared with standard chow fed mice, no differences were observed between wt and tpl2(-/-) mice. Finally, a HF diet did not increase Tpl2 expression nor did it activate Extracellular Signal-Regulated Kinase 1/2 (ERK1/2), the MAPK downstream of Tpl2. These findings argue that Tpl2 does not play a non-redundant role in obesity-associated metabolic dysfunction.  相似文献   

11.
In this study we have evaluated the effect of maximal incremental cycling exercise (IE) on the systemic release of prostacyclin (PGI(2)), assessed as plasma 6-keto-PGF(1alpha) concentration in young healthy men. Eleven physically active - untrained men (mean +/- S.D.) aged 22.7 +/- 2.1 years; body mass 76.3 +/- 9.1 kg; BMI 23.30 +/- 2.18 kg . m(-2); maximal oxygen uptake (VO(2max)) 46.5 +/- 3.9 ml . kg(-1) . min(-1), performed an IE test until exhaustion. Plasma concentrations of 6-keto-PGF(1alpha), lactate, and cytokines were measured in venous blood samples taken prior to the exercise and at the exhaustion. The net exercise-induced increase in 6-keto-PGF(1alpha) concentration, expressed as the difference between the end-exercise minus pre-exercise concentration positively correlated with VO(2max) (r=0.78, p=0.004) as well as with the net VO(2) increase at exhaustion (r=0.81, p=0.003), but not with other respiratory, cardiac, metabolic or inflammatory parameters of the exercise (minute ventilation, heart rate, plasma lactate, IL-6 or TNF-alpha concentrations). The exercise-induced increase in 6-keto-PGF(1alpha) concentration?? was significantly higher (p=0.008) in a group of subjects (n=5) with the highest VO(2max) when compared to the group of subjects with the lowest VO(2max), in which no increase in 6-keto-PGF(1alpha) concentration was found. In conclusion, we demonstrated, to our knowledge for the first time, that exercise-induced release of PGI(2) in young healthy men correlates with VO(2max), suggesting that vascular capacity to release PGI(2) in response to physical exercise represents an important factor characterizing exercise tolerance. Moreover, we postulate that the impairment of exercise-induced release of PGI(2) leads to the increased cardiovascular hazard of vigorous exercise.  相似文献   

12.
The present study investigates the effects of CD40 ligand (CD40L) on mitogenic signalling, proliferation, and migration of cultured bovine coronary artery smooth muscle cells (SMC). A time- and concentration-dependent phosphorylation of the extracellular signal-regulated kinases-1/2 (ERK-1/2) and the mitogen-activated protein kinase p38 (p38-MAPK) was observed upon stimulation with soluble CD40L (sCD40L). This phosphorylation was inhibited by neutralizing antibodies against the CD40 and CD40L, respectively. Activation of the phosphatidylinositol-3-phosphate (PI-3) kinase pathway by sCD40L, as determined by the measurement of Akt phosphorylation, was not detected. However, there was evidence for direct activation of the NFkappaB system (degradation of IkappaBalpha and nuclear translocation of the p65 NFkappaB subunit) by sCD40L. Accordingly, sCD40L caused a small but significant increase in DNA synthesis. However, sCD40L-induced DNA synthesis was not followed by proliferation (increase in cell number). Furthermore, sCD40L did not potentiate SMC mitogenesis induced by known mitogens such as platelet-derived growth factor-BB, thrombin or serum. The lack of cell proliferation was not caused by a concomitant induction of SMC apoptosis by sCD40L. The possible role of membrane-bound CD40L in SMC mitogenesis was also studied using different membrane preparations (platelets, lymphocytes). However, no mitogenic effects of membrane-bound CD40L were detected. Finally, sCD40L did not induce SMC migration. From these data it is concluded that CD40L activates mitogenic signalling and DNA synthesis but does not contribute to proliferation or migration of vascular SMC.  相似文献   

13.
The role that the nuclear factor (NF)-kappa B plays in regulating the biosynthesis of interleukin (IL)-1 beta, an inflammatory cytokine, has been investigated in vitro. Irreversible inhibition of the proteasome complex by carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG-132; 1-50 microM) had no inhibitory effect on lipopolysaccharide (LPS)-mediated IL-1 beta biosynthesis. Furthermore, selective inhibition of NF-kappa B by the action of caffeic acid phenylethyl ester (CAPE; 1-100 microM) and sulfasalazine (SSA; 0.1-10 mM), a potent and irreversible inhibitor of NF-kappa B, partially attenuated but did not abolish LPS-dependent IL-1 beta secretion. Incorporation of a selectively permeant inhibitor of NF-kappa B, SN-50 (1-20 microM), a peptide which contains the nuclear localization sequence (NLS) for the p50 NF-kappa B subunit and the amino-terminal sequence of Kaposi fibroblast growth factor to promote cell permeability, attenuated in a dose-dependent manner LPS-mediated release of IL-1 beta. It is concluded that the NF-kapp B pathway is partially implicated and its blockade attenuates but does not abrogate LPS-dependent IL-1 beta biosynthesis in alveolar epithelial cells.  相似文献   

14.
The purpose of this study was to examine O(2) uptake (Vo(2)) on-kinetics when the spontaneous blood flow (and therefore O(2) delivery) on-response was slowed by 25 and 50 s. The isolated gastrocnemius muscle complex (GS) in situ was studied in six anesthetized dogs during transitions from rest to a submaximal metabolic rate (≈50-70% of peak Vo(2)). Four trials were performed: 1) a pretrial in which resting and steady-state blood flows were established, 2) a control trial in which the blood flow on-kinetics mean response time (MRT) was set at 20 s (CT20), 3) an experimental trial in which the blood flow on-kinetics MRT was set at 45 s (EX45), and 4) an experimental trial in which the blood flow on-kinetics MRT was set at 70 s (EX70). Slowing O(2) delivery via slowing blood flow on-kinetics resulted in a linear slowing of the Vo(2) on-kinetics response (R = 0.96). Average MRT values for CT20, EX45, and EX70 Vo(2) on-kinetics were (means ± SD) 17 ± 2, 23 ± 4, and 26 ± 3 s, respectively (P < 0.05 among all). During these transitions, slowing blood flow resulted in greater muscle deoxygenation (as indicated by near-infrared spectroscopy), suggesting that lower intracellular Po(2) values were reached. In this oxidative muscle, Vo(2) and O(2) delivery were closely matched during the transition period from rest to steady-state contractions. In conjunction with our previous work showing that speeding O(2) delivery did not alter Vo(2) on-kinetics under similar conditions, it appears that spontaneously perfused skeletal muscle operates at the nexus of sufficient and insufficient O(2) delivery in the transition from rest to contractions.  相似文献   

15.
We have previously shown that the combination of caffeine, carnitine, and choline supplementation decreased body fat and serum leptin concentration in rats and was attributed to increased fat utilization for energy. As a result, it was hypothesized that the supplements may augment exercise performance including physiological and biochemical indexes. Twenty 7-week-old male Sprague-Dawley rats were given free access to a nonpurified diet with or without supplementation of caffeine, carnitine, and choline at concentrations of 0.1, 5, and 11.5 g/kg diet, respectively. One half of each dietary group was exercised on a motor-driven treadmill for 3 weeks and maximal aerobic power (VO(2)max) was determined on the 18th day of exercise. Rats were killed 24-hr postexercise, and blood, regional fat pads, and skeletal muscle were collected. The VO(2)max was increased (P < 0.05) in the supplemented/exercised group; however, the respiratory quotient (RQ) was not affected. Postexercised concentrations of serum triglycerides were decreased but beta-hydroxybutyrate, acylcarnitine, and acetylcarnitine were increased in the supplemented animals. The changes in serum metabolites were complemented by the changes in the muscle and urinary metabolites. The magnitude of increase in urinary acylcarnitines (34-45-fold) is a unique effect of this combination of supplements. Cumulative evidence indicates enhanced beta-oxidation of fatty acids without a change in the RQ because acetyl units were excreted in urine as acetylcarnitine and not oxidized to carbon dioxide. For this phenomenon, we propose the term "fatty acid dumping." We conclude that supplementation with caffeine, carnitine, and choline augments exercise performance and promotes fatty acid oxidation as well as disposal in urine.  相似文献   

16.
The thermogenic response to food (TRF) and substrate oxidation were studied in 12 endurance-trained and 13 untrained female subjects. Energy expenditure and substrate oxidation were calculated by indirect calorimetry before and for 6 h after an oral test meal and after the same meal given intragastrically on a separate occasion. The TRF was calculated after the oral meal, the obligatory component after the intragastric meal (OTRF), and the facultative component from the difference between the two. VO(2 max) was measured on a treadmill and body composition by underwater weighing. The TRF and OTRF were significantly higher in trained than in untrained subjects: 223 +/- 63 vs. 185 +/- 50 kJ/6 h (P < 0.03) and 174 +/- 38 vs. 131 +/- 37 kJ/6 h (P < 0.01) for the TRF and OTRF in trained vs. untrained subjects, respectively. Multiple regression analysis showed that maximum O(2) consumption (VO(2 max)), but not percentage of body fat, was significantly related to OTRF (r =0.68, P < 0.01). Trained subjects had higher fatty acid oxidation than untrained subjects before (0.6 vs. 0.4 mg. kg(-1). min(-1), P < 0.05) and after the oral meal (13 +/- 6 vs. 8 +/- 4 g/6 h P < 0.05). These results demonstrate that 1) TRF is higher in trained than in untrained women; 2) this is due to a higher cost of nutrient digestion, absorption and storage; 3) the difference is related to higher VO(2 max); and 4) fatty acid oxidation is greater in trained women in both the postabsorptive and postprandial states. These observations suggest that endurance training induces metabolic changes that favor leanness.  相似文献   

17.
The objective of this study was to examine the relationship between the critical velocity (CV) test and maximal oxygen consumption (VO2max) and develop a regression equation to predict VO2max based on the CV test in female collegiate rowers. Thirty-five female (mean ± SD; age, 19.38 ± 1.3 years; height, 170.27 ± 6.07 cm; body mass, 69.58 ± 0.3 1 kg) collegiate rowers performed 2 incremental VO2max tests to volitional exhaustion on a Concept II Model D rowing ergometer to determine VO2max. After a 72-hour rest period, each rower completed 4 time trials at varying distances for the determination of CV and anaerobic rowing capacity (ARC). A positive correlation was observed between CV and absolute VO2max (r = 0.775, p < 0.001) and ARC and absolute VO2max (r = 0.414, p = 0.040). Based on the significant correlation analysis, a linear regression equation was developed to predict the absolute VO2max from CV and ARC (absolute VO2max = 1.579[CV] + 0.008[ARC] - 3.838; standard error of the estimate [SEE] = 0.192 L·min(-1)). Cross validation analyses were performed using an independent sample of 10 rowers. There was no significant difference between the mean predicted VO2max (3.02 L·min(-1)) and the observed VO2max (3.10 L·min(-1)). The constant error, SEE and validity coefficient (r) were 0.076 L·min(-1), 0.144 L·min(-1), and 0.72, respectively. The total error value was 0.155 L·min(-1). The positive relationship between CV, ARC, and VO2max suggests that the CV test may be a practical alternative to measuring the maximal oxygen uptake in the absence of a metabolic cart. Additional studies are needed to validate the regression equation using a larger sample size and different populations (junior- and senior-level female rowers) and to determine the accuracy of the equation in tracking changes after a training intervention.  相似文献   

18.
The evaluation of performance through the application of adequate physical tests during a sportive season may be a useful tool to evaluate training adaptations and determine training intensities. For runners, treadmill incremental VO(2)max tests with gas exchange analysis have been widely used to determine maximal and submaximal parameters such as the ventilatory threshold (VT) and respiratory compensation point (RCP) running speed. However, these tests often differ in methodological characteristics (e.g., stage duration, grade, and speed increment size), and few studies have examined the reproducibility of their protocol. Therefore, the aim of this study was to verify the reproducibility and determine the running speeds related to maximal and submaximal parameters of a specific incremental maximum effort treadmill protocol for amateur runners. Eleven amateur male runners underwent 4 repetitions of the protocol (25-second stages, each increasing by 0.3 km·h in running speed while the treadmill grade remained fixed at 1%) after 3 minutes of warm-up at 8-8.5 km·h. We found no significant differences in any of the analyzed parameters, including VT, RCP, and VO(2)max during the 4 repetitions (p > 0.05). Further, the results related to running speed showed high within-subject reproducibility (coefficient of variation < 5.2%). The typical error (TE) values for running speed related to VT (TE = 0.62 km·h), RCP (TE = 0.35 km·h), and VO(2)max (TE = 0.43 km·h) indicated high sensitivity and reproducibility of this protocol. We conclude that this VO(2)max protocol facilitates a clear determination of the running speeds related to VT, RCP, and VO(2)max and has the potential to enable the evaluation of small training effects on maximal and submaximal parameters.  相似文献   

19.
20.
This study evaluated the effects of rat ANP(5-28) infusion into the blood-perfused dog gracilis muscle at concentrations ranging from 30 to 10,000 pg/ml. The vasculature of gracilis muscles from anesthetized beagle dogs was isolated and pump-perfused at constant flow with blood utilizing an extracorporeal circuit. Maximal vasodilatory capacity was determined by adenosine injection. ANP was infused into the arterial circuit to produce increasing arterial blood concentrations. Each infusion lasted 10 min. Systemic arterial pressure, central venous pressure, cardiac output and heart rate did not change during ANP infusion into the gracilis vasculature. ANP at arterial blood concentrations up to 10,000 pg/ml did not produce significant vasodilation although the vasculature showed pronounced vasodilation in response to adenosine. In vitro experiments showed that ANP had much less vasorelaxant activity in dog femoral artery and saphenous vein than in rabbit aorta. Therefore, rat ANP(5-28) at concentrations within and well above physiological and pharmacological ranges does not inhibit the basal vascular tone present in the innervated, blood-perfused dog gracilis muscle in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号