共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural characterization of peptide hormones and their interaction with G-protein (guanine nucleotide-binding regulatory protein) coupled receptors by high-resolution nmr is described. The general approaches utilized can be categorized into three different classes based on their target: the ligand, the receptor, and the ligand/receptor complex. Examples of these different approaches, aimed at facilitating the rational design of peptides and peptidomimetics with improved pharmacological profiles, based on work carried out in our own laboratory, are given. In the ligand-based approach, the high-resolution structures of bradykinin analogues allowing for the development of a structure-activity relationship for activation of the B1 receptor are described. Studies targeting the receptor are to a large extent theoretical, based on computational molecular modeling. However, experimentally based structural features provided by high-resolution nmr can be used to great advantage, providing insight into the mechanism of receptor function, as illustrated here with results from parathyroid hormone. A similar combination of theoretical methods, supplemented by high-resolution structures from nmr has been utilized to probe the formation and stabilization of the ligand/receptor complex both for parathyroid hormone and cholecystokinin. In each of these three approaches, the importance of well-designed peptide mimetics and accurate structural analysis by high-resolution nmr, will be highlighted. 相似文献
2.
Structural proteomics is one of the powerful research areas in the postgenomic era, elucidating structure-function relationships of uncharacterized gene products based on the 3D protein structure. It proposes biochemical and cellular functions of unannotated proteins and thereby identifies potential drug design and protein engineering targets. Recently, a number of pioneering groups in structural proteomics research have achieved proof of structural proteomic theory by predicting the 3D structures of hypothetical proteins that successfully identified the biological functions of those proteins. The pioneering groups made use of a number of techniques, including NMR spectroscopy, which has been applied successfully to structural proteomics studies over the past 10 years. In addition, advances in hardware design, data acquisition methods, sample preparation and automation of data analysis have been developed and successfully applied to high-throughput structure determination techniques. These efforts ensure that NMR spectroscopy will become an important methodology for performing structural proteomics research on a genomic scale. NMR-based structural proteomics together with x-ray crystallography will provide a comprehensive structural database to predict the basic biological functions of hypothetical proteins identified by the genome projects. 相似文献
3.
Tegshi MuschinTakashi Yoshida 《Carbohydrate polymers》2012,87(3):1893-1898
The structure of naturally occurring galactomannans was characterized by high resolution NMR spectroscopy involving two-dimensional (2D) NMR measurements of the field gradient DQF-COSY, HMQC, HMBC, and ROESY experiments. Four galactomannans with different proportions of galactose (G) and mannose (M), from fenugreek gum (FG), guar gum (GG), tara gum (TG), and locust bean gum (LG), were investigated. Because these galactomannans had very high molecular weights, hydrolysis by dilute H2SO4 was carried out to give the corresponding low molecular weight galactomannans, the structural identities of which were established by comparison of the specific rotations, shape of the GPC profiles, and NMR spectra with those of higher molecular weight galactomannans. The correlation signals GH1-GC4, -GC5, and -MC6 in HMBC and GH1-GH6 in ROESY spectra of FG showed that more than two galactopyranose units with the 1 → 4 linkage were connected at C6 of the mannopyranose main chain. The coupling constant (JH1,2) of galactose was 3.4 Hz, indicating that galactose has an α-linkage. The main chain mannose was found to connect through the 1 → 4 linkage, because of the appearance of the correlation signals MH1-MC4, and MC1-MH4 in the HMBC spectrum due to the long-range correlation signals between two neighboring mannopyranose residues through the M4-O-M1 bond. Although the main chain mannose JH1,2 was not observed, probably because of the high molecular weight, the specific rotation of LG with a higher proportion of mannose was low, [α]D25 = +10.8°, compared with that of FG with a lower proportion of mannose, [α]D25 = +90.5°, suggesting that the mannose in the main chain had a α-linkage. These results suggest that the galactomannans comprise a (1 → 4)-β-mannopyranosidic main chain connected with more than two (1 → 4)-α-galactopyranosidic side chains, in addition to the single galactopyranose side chain, at C6 of the mannopyranose main chain. 相似文献
4.
K Izumi 《Biochimica et biophysica acta》1973,320(2):311-317
5.
Four betacyanin pigments were analysed by LC NMR and subjected to extensive NMR characterisation after isolation. Previously, low pH values were applied for NMR investigations of betalains resulting in rapid degradation of the purified substances thus preventing extensive NMR studies. Consequently, up to now only one single (13)C NMR spectrum of a betalain pigment, namely that of neobetanin (=14,15-dehydrobetanin), was available. Because of its sufficient stability under highly acidic conditions otherwise detrimental for betacyanins, this pigment remained an exemption. Since betalains are most stable in the pH range of 5-7, a new solvent system has been developed allowing improved data acquisition through improved pigment stability at near neutral pH. Thus, not only (1)H, but for the first time also partial (13)C data of betanin, isobetanin, phyllocactin and hylocerenin isolated from red-purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose, Cactaceae] could be indirectly obtained by gHSQC- and gHMQC-NMR experiments. 相似文献
6.
D Craik S Munro K Nielsen P Shehan G Tregear J Wade 《European journal of biochemistry》1991,201(1):183-190
Two-dimensional (2D) 1H-NMR spectra of porcine-brain natriuretic peptide (pBNP) have been recorded at 300 MHz and 400 MHz. Peak assignments have been made and the combined information from chemical shifts, coupling constants, temperature coefficients and NOEs have been used to determine the conformational properties of pBNP in (C2H3)2SO. Overall the peptide appears to be flexible, with the possibility of some beta-type structure near the C terminus. Some of the assignments and deduced structural features in the current study differ from those in a recent report by Inooka et al. [Inooka, H., Kikuchi, T., Endo, S., Ishibashi, Y., Wakimasu, M. and Mizuta, E. (1990) Eur. J. Biochem. 193, 127-134] which may indicate the sensitivity of the structure of this peptide to differences in solution conditions. 相似文献
7.
Tobias Tengel Ingmar Sethson Matthew S Francis 《European journal of biochemistry》2002,269(15):3659-3668
To establish an infection, Yersinia pseudotuberculosis utilizes a plasmid-encoded type III secretion machine that permits the translocation of several anti-host factors into the cytosol of target eukaryotic cells. Secreted YopD is essential for this process. Pre-secretory stabilization of YopD is mediated by an interaction with its cognate chaperone, LcrH. YopD possesses LcrH binding domains located in the N-terminus and in a predicted amphipathic domain located near the C-terminus. This latter domain is also critical for Yersinia virulence. In this study, we designed synthetic peptides encompassing the C-terminal amphipathic domain of YopD. A solution structure of YopD278-300, a peptide that strongly interacted with LcrH, was obtained by NMR methods. The structure is composed of a well-defined amphipathic alpha helix ranging from Phe280 to Tyr291, followed by a type I beta turn between residues Val292 and His295. The C-terminal truncated peptides, YopD278-292 and YopD271-292, lacked helical structure, implicating the beta turn in helix stability. An interaction between YopD278-300 and its cognate chaperone, LcrH, was observed by NMR through line-broadening effects and chemical shift differences between the free peptide and the peptide-LcrH complex. These effects were not observed for the unstructured peptide, YopD278-292, which confirms that the alpha helical structure of the YopD amphipathic domain is a critical binding region of LcrH. 相似文献
8.
Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy. 总被引:3,自引:0,他引:3
Kyoungsoo Park Donghoon Oh Song Yub Shin Kyung-Soo Hahm Yangmee Kim 《Biochemical and biophysical research communications》2002,290(1):204-212
PMAP-23 is a cathelicidin-derived antimicrobial peptide identified from porcine leukocytes. PMAP-23 was reported to show potent antimicrobial activity against Gram-negative and Gram-positive bacteria without hemolytic activity. To study the structure-antibiotic activity relationships of PMAP-23, two analogues by replacing Trp with Ala were synthesized and their tertiary structures bound to DPC micelles have been studied by NMR spectroscopy. PMAP-23 has two alpha-helices, one from Arg1 to Arg10 in the N-terminal region and the other from Phe18 to Arg23 in the C-terminal region. PMAP-1 (Trp(7)-->Ala) shows similar structure to PMAP-23, while PMAP-2 (Trp(21)-->Ala) has a random structure in the C-terminus. PMAP-2 was found to show less antibacterial and vesicle-disrupting activities than PMAP-23 and PMAP-1 [J. H. Kang, S. Y. Shin, S. Y. Jang, K. L. Kim, and K.-S. Hahm (1999) Biochem. Biophys. Res. Commun. 264, 281-286]. Trp(21) in PMAP-23 which induces an alpha-helical structure in the second alpha-helix is essential for the antibacterial activity of PMAP-23. Also, the fluorescence data proved that Trp(21) at the second alpha-helix is buried deep into the phospholipid in the membrane. Therefore, it implies that Trp(21) in the second alpha-helix at the C-terminus of PMAP-23 may play an important role on the interactions with the membrane and the flexible region including two proline residues may allow this alpha-helix to span the lipid bilayer. 相似文献
9.
A 39-residue peptide (p7-DF) containing the two zinc binding domains of the p7 nucleocapsid protein was prepared by solid-phase peptide synthesis. The solution structure of the peptide was characterized using circular dichroic and nuclear magnetic resonance spectroscopy in both the presence and absence of zinc ions. Circular dichroic spectroscopy indicates that the peptide exhibits a random coil conformation in the absence of zinc but appears to form an ordered structure in the presence of zinc. Two-dimensional nuclear magnetic resonance spectroscopy indicates that the two zinc binding domains within the peptide form stable, but independent, units upon the addition of 2 equivalents of ZnCl2 per equivalent of peptide. Structure calculations on the basis of nuclear Overhauser (NOE) data indicate that the two zinc binding domains have the same polypeptide fold within the errors of the coordinates (approximately 0.5 A for the backbone atoms, the zinc atoms and the coordinating cysteine and histidine ligands). The linker region (Arg17-Gly23) is characterized by a very limited number of sequential NOEs and the absence of any non-sequential NOEs suggest that this region of polypeptide chain is highly flexible. The latter coupled with the occurrence of a large number of basic residues (four out of seven) in the linker region suggests that it may serve to allow adaptable positioning of the nucleic acid recognition sequences within the protein. 相似文献
10.
P Tsang M Rance T M Fieser J M Ostresh R A Houghten R A Lerner P E Wright 《Biochemistry》1992,31(15):3862-3871
The dynamics and conformation of the peptide antigen MHKDFLEKIGGL bound to the Fab' fragment of the monoclonal antipeptide antibody B13A2, raised against a peptide from myohemerythrin, have been investigated by isotope-edited NMR techniques. The peptides were labeled with 15N (98%) or 13C (99%) at the backbone of individual amino acid residues. Well-resolved amide proton and nitrogen backbone resonances were obtained and assigned for eight of the 12 residues of this bound peptide. Significant resonance line width and chemical shift differences were observed. The 15N and 1H line width variations are attributed to differential backbone mobilities among the bound peptide residues which are consistent with the previously mapped epitope of this peptide antigen. Local structural information was obtained from isotope-directed NOE studies. The approximate distances associated with the experimental NOEs were estimated on the basis of a theoretical NOE analysis involving the relative integrated intensities of the NOE and source peaks. In this way, the sequential NH-NH NOEs obtained for seven of the Fab'-bound peptide residues were shown to correspond to interproton separations of approximately 3 A or less. Such short distances indicate that the backbone dihedral angles of these residues are in the alpha rather than the beta region of phi,psi conformational space; the peptide most likely adopts a helical conformation from F5 to G11 within the antibody combining site. The significance of these results with respect to the type and extent of conformational information obtainable from studies of high molecular weight systems is discussed. 相似文献
11.
Using CD and 2D (1)H NMR spectroscopy, we have identified potential initiation sites for the folding of T4 lysozyme by examining the conformational preferences of peptide fragments corresponding to regions of secondary structure. CD spectropolarimetry showed most peptides were unstructured in water, but adopted partial helical conformations in TFE and SDS solution. This was also consistent with the (1)H NMR data which showed that the peptides were predominantly disordered in water, although in some cases, nascent or small populations of partially folded conformations could be detected. NOE patterns, coupling constants, and deviations from random coil Halpha chemical shift values complemented the CD data and confirmed that many of the peptides were helical in TFE and SDS micelles. In particular, the peptide corresponding to helix E in the native enzyme formed a well-defined helix in both TFE and SDS, indicating that helix E potentially forms an initiation site for T4 lysozyme folding. The data for the other peptides indicated that helices D, F, G, and H are dependent on tertiary interactions for their folding and/or stability. Overall, the results from this study, and those of our earlier studies, are in agreement with modeling and HD-deuterium exchange experiments, and support an hierarchical model of folding for T4 lysozyme. 相似文献
12.
13.
Lin TH Chia CM Hsiao JC Chang W Ku CC Hung SC Tzou DL 《The Journal of biological chemistry》2002,277(23):20949-20959
This study presents the molecular structure of the extracellular domain of vaccinia virus envelope protein, A27L, determined by NMR and CD spectroscopy. A recombinant protein, eA27L-aa, containing this domain in which cysteines 71 and 72 were replaced with alanine, was constructed to prevent self-assembly due to intermolecular disulfide bonds between these two cysteines. The soluble eA27L-aa protein forms an oligomer resembling that of A27L on vaccinia virions. Heteronuclear correlation NMR spectroscopy was carried out on eA27L-aa in the presence or absence of urea to determine backbone resonance assignments. Chemical shift index (CSI) propensity analysis showed that eA27L-aa has two distinct structural domains, a relatively flexible 22-amino acid random coil in the N-terminal region and a fairly rigid alpha-helix structure in the remainder of the structure. Binding interaction studies using isothermal titration calorimetry suggest that a 12-amino acid lysine/arginine-rich segment in the N-terminal region is responsible for glycosaminoglycan binding. The rigid alpha-helix portion of eA27L-aa is probably involved in the intrinsic self-assembly, and CSI propensity analysis suggests that region N37-E49, with a residual alpha-helix tendency, is probably the self-assembly core. Self-assembly was ascribed to three hydrophobic leucine residues (Leu(41), Leu(45), and Leu(48)) in this segment. The folding mechanism of eA27L-aa was analyzed by CD spectroscopy, which revealed a two-step transition with a Gibbs free energy of 2.5 kcal/mol in the absence of urea. Based on these NMR and CD studies, a residue-specific molecular model of the extracellular domain of A27L is proposed. These studies on the molecular structure of eA27L-aa will help in understanding how vaccinia virus enters cells. 相似文献
14.
The structure of the vasoactive intestinal peptide 1-28 in 40% 2,2,2-trifluoroethanol was investigated by two-dimensional 1H-nmr spectroscopy. All 1H resonances, except the gamma, delta, and epsilon protons of the lysine residues, could be sequentially assigned. Numerous intraresidual as well as short-range interresidual nuclear Overhauser effect spectroscopy connectivities were observed. Using a variable-target function minimization, a molecular model consisting of two helical stretches involving residues 7-15 and 19-27 connected by a region of undefined structure was calculated. The existence of an undefined structure between residues 16 and 18 confers mobility to the peptide molecule. 相似文献
15.
Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy
下载免费PDF全文

Nanodiscs are an example of discoidal nanoscale self-assembled lipid/protein particles similar to nascent high-density lipoproteins, which reduce the risk of coronary artery disease. The major protein component of high-density lipoproteins is human apolipoprotein A-I, and the corresponding protein component of Nanodiscs is membrane scaffold protein 1 (MSP1), a 200-residue lipid-binding domain of human apolipoprotein A-I. Here we present magic-angle spinning (MAS) solid-state NMR studies of uniformly (13)C,(15)N-labeled MSP1 in polyethylene glycol precipitated Nanodiscs. Two-dimensional MAS (13)C-(13)C correlation spectra show excellent microscopic order of MSP1 in precipitated Nanodiscs. Secondary isotropic chemical shifts throughout the protein are consistent with a predominantly helical structure. Moreover, the backbone conformations of prolines derived from their (13)C chemical shifts are consistent with the molecular belt model but not the picket fence model of lipid-bound MSP1. Overall comparison of experimental spectra and (13)C chemical shifts predicted from several structural models also favors the belt model. Our study thus supports the belt model of Nanodisc structure and demonstrates the utility of MAS NMR to study the structure of high molecular weight lipid-protein complexes. 相似文献
16.
17.
SIp NMR studies on microorganisms have been carried out with the cells embedded in agarose gel. The novel use of the gel for the NMR studies has advantages over the usual liquid suspensions in terms of improved reproducibility of data and cell viability, with no net loss of spectral quality. Polyphosphate formation in Escherichia coli was monitored continuously for up to 24 h and metabolic changes in yeast for 6 h. Changes of the intracellular pH during glycolysis in yeast were determined from the chemical shift of the internal Pi. NMR titration curves of Pi in the presence of Mg2+ indicate uncertainties in internal pH values estimated by this technique. 相似文献
18.
The heme environmental structures of lactoperoxidase (LP) have been studied by the use of hyperfine-shifted proton NMR and optical absorption spectra. The NMR spectra of the enzyme in native and cyanide forms in H2O indicated that the fifth ligand of the heme iron is the histidyl imidazole with an anionic character and that the sixth coordination site is possibly vacant. These structural characteristics are quite similar to those of horseradish peroxidase (HRP), suggesting that these may be prerequisite to peroxidase activity. The pH dependences of the spectra of LP in cyanide and azide forms showed the presence of two ionizable groups with pK values of 6 and 7.4 in the heme vicinity, which is consistent with the kinetic results. The group with pK = 7.4 is associated with azide binding to LP in a slow NMR exchange limit, which is in contrast to the fast entry of azide to HRP. 相似文献
19.
Salnikov ES Aisenbrey C Balandin SV Zhmak MN Ovchinnikova TV Bechinger B 《Biochemistry》2011,50(18):3784-3795
The antimicrobial arenicin peptides are cationic amphipathic sequences that strongly interact with membranes. Through a cystine ring closure a cyclic β-sheet structure is formed in aqueous solution, which persists when interacting with model membranes. In order to investigate the conformation, interactions, dynamics, and topology of their bilayer-associated states, arenicin 1 and 2 were prepared by chemical solid-phase peptide synthesis or by bacterial overexpression, labeled selectively or uniformly with (15)N, reconstituted into oriented membranes, and investigated by proton-decoupled (31)P and (15)N solid-state NMR spectroscopy. Whereas the (31)P NMR spectra indicate that the peptide induces orientational disorder at the level of the phospholipid head groups, the (15)N chemical shift spectra agree well with a regular β-sheet conformation such as the one observed in micellar environments. In contrast, the data do not fit the twisted β-sheet structure found in aqueous buffer. Furthermore, the chemical shift distribution is indicative of considerable conformational and/or topological heterogeneity when at the same time the (15)N NMR spectra exclude alignments of the peptide where the β-sheet lies side ways on the membrane surface. The ensemble of experimental constraints, the amphipathic character of the peptide, and in particular the distribution of the six arginine residues are in agreement with a boatlike dimer structure, similar or related to the one observed in micellar solution, that floats on the membrane surface with the possibility to oligomerize into higher order structures and/or to insert in a transmembrane fashion. 相似文献