首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
5-Fluorouracil (5-FU), a drug with numerous mechanisms of action which has a long-term suppressive effect on human cancer cell proliferation, mediates both partial dephosphorylation and inactivation of poly(A) polymerase (PAP) [EC. 2.7.7.19] as detected by immunoblotting analysis and non-specific enzyme assay, respectively, in human carcinoma HeLa and diploid WISH cells at a concentration of 100 microM. When the same experiment is done in the presence of phosphatase inhibitors, 5-FU-induced partial PAP dephosphorylation is abolished. Moreover, a cell type-modulated, differential response of HeLa cells (5-FU chemosensitive cells) versus WISH cells (drug-resistant diploid cells) is observed. These results suggest that 5-FU induces early direct or indirect changes in the structure and function of PAP and may regulate pre-mRNA cleavage-polyadenylation.  相似文献   

2.
Cancer results from an imbalance between cell cycle progression and apoptosis. Therefore, most anticancer drugs exert their antiproliferative and cytotoxic activity via cell cycle arrest and induction of apoptosis, a controlled form of cell death that is dysregulated in cancer. Many polyadenylation trans-acting factors, including polyadenylate polymerase (PAP), are increasingly found to be involved in cell cycle, apoptosis and cancer prognosis. The objective of the present study was to identify PAP modulations in the response of two epithelial cancer cell lines (HeLa and MCF-7) to apoptosis induction by the anticancer drugs etoposide and cordycepin. Cells were assessed for PAP activity and isoforms by the highly sensitive PAP activity assay and Western blotting, respectively. Induction of apoptosis was determined by endonucleosomal DNA cleavage, 4'6-diamidino-2-phenylindol (DAPI) staining and caspase-6 activity assay, whereas cytotoxicity and cell cycle status were assessed by trypan blue staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Our results indicate that PAP changes very early in response to either etoposide or cordycepin treatment, even prior to the hallmarks of apoptosis (chromatin condensation and cleavage), in both cell lines tested, but in a different mode. Our results suggest, for the first time, that in the epithelial cancer cell lines used, PAP modulations follow cell cycle progression rather than the course of apoptosis.  相似文献   

3.
A series of dipeptide derivatives from dehydroabietic acid were designed and synthesized as novel antitumor agents. The antitumor activities screening indicated that many compounds showed moderate to high levels of inhibition activities against NCI-H460, HepG2, SK-OV-3, BEL-7404, HeLa and HCT-116 cancer cell lines and that some displayed more potent inhibitory activities than commercial anticancer drug 5-fluorouracil. The mechanism of representative compound 7b was studied by AO/EB staining, Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining, TUNEL assay, DNA ladder assay and flow cytometry, which exhibited that the compound could induce apoptosis in HeLa cells. Further investigation showed that compound 7b induced apoptosis of HeLa cells through a mitochondrial pathway.  相似文献   

4.
The capacity for nucleotide excision repair of a normal (WISH) and three tumour (MCF-7, HeLa, Namalva) cell lines treated with human recombinant interferons (hrIFN-alpha and hrIFN-gamma) was compared by the host cell reactivation assay. The cells were transfected with in vitro UV-damaged plasmid DNA (pEGFP-N1). The repair capacity was determined by measuring the fluorescence intensity of the expressed marker protein in total cell lysates. The correlation between the interferon-induced NO content and the suppressive effect of interferons on DNA repair was shown. The decrease of repair activity and NO induction by hrIFN-alpha were greatest in WISH, followed by MCF-7, Namalva and HeLa cells, whereas hrIFN-gamma was the best NO inducer and inhibitor for the repair of Namalva, followed by WISH, MCF-7 and HeLa cells. Our data clearly show that the two types of interferon have a strong inhibitory effect on the repair of UV-damaged DNA and this effect is cell type-dependent.  相似文献   

5.
The aim of the present study was to investigate the therapeutic efficacy of genetically engineered stem cells (GESTECs) expressing bacterial cytosine deaminase (CD) and/or human interferon-beta (IFN-β) gene against HeLa cervical cancer and the migration factors of the GESTECs toward the cancer cells. Anticancer effect of GESTECs was examined in a co-culture with HeLa cells using MTT assay to measure cell viability. A transwell migration assay was performed so as to assess the migration capability of the stem cells to cervical cancer cells. Next, several chemoattractant ligands and their receptors related to a selective migration of the stem cells toward HeLa cells were determined by real-time PCR. The cell viability of HeLa cells was decreased in response to 5-fluorocytosine (5-FC), a prodrug, indicating that 5-fluorouracil (5-FU), a toxic metabolite, was converted from 5-FC by CD gene and it caused the cell death in a co-culture system. When IFN-β was additionally expressed with CD gene by these GESTECs, the anticancer activity was significantly increased. In the migration assay, the GESTECs selectively migrated to HeLa cervical cancer cells. As results of real-time PCR, chemoattractant ligands such as MCP-1, SCF, and VEGF were expressed in HeLa cells, and several receptors such as uPAR, VEGFR2, and c-kit were produced by the GESTECs. These GESTECs transduced with CD gene and IFN-β may provide a potential of a novel gene therapy for anticervical cancer treatments via their selective tumor tropism derived from VEGF and VEGFR2 expressions between HeLa cells and the GESTECs.  相似文献   

6.
5-Fluorouracil (5-FU), 5-fluorodeoxyuridine (5-dUrd), and raltitrixed (RTX) are anticancer agents that target thymidylate synthase (TS), thereby blocking the conversion of dUMP into dTMP. In budding yeast, 5-FU promotes a large increase in the dUMP/dTMP ratio leading to massive polymerase-catalyzed incorporation of uracil (U) into genomic DNA, and to a lesser extent 5-FU, which are both excised by yeast uracil DNA glycosylase (UNG), leading to DNA fragmentation and cell death. In contrast, the toxicity of 5-FU and RTX in human and mouse cell lines does not involve UNG, but, instead, other DNA glycosylases that can excise uracil derivatives. To elucidate the basis for these divergent findings in yeast and human cells, we have investigated how these drugs perturb cellular dUTP and TTP pool levels and the relative abilities of three human DNA glycosylases (hUNG2, hSMUG1, and hTDG) to excise various TS drug-induced lesions in DNA. We found that 5-dUrd only modestly increases the dUTP and dTTP pool levels in asynchronous MEF, HeLa, and HT-29 human cell lines when growth occurs in standard culture media. In contrast, treatment of chicken DT40 B cells with 5-dUrd or RTX resulted in large increases in the dUTP/TTP ratio. Surprisingly, even though UNG is the only DNA glycosylase in DT40 cells that can act on U·A base pairs derived from dUTP incorporation, an isogenic ung(-/-) DT40 cell line showed little change in its sensitivity to RTX as compared to control cells. In vitro kinetic analyses of the purified human enzymes show that hUNG2 is the most powerful catalyst for excision of 5-FU and U regardless of whether it is found in base pairs with A or G or present in single-stranded DNA. Fully consistent with the in vitro activity assays, nuclear extracts isolated from human and chicken cell cultures show that hUNG2 is the overwhelming activity for removal of both U and 5-FU, despite its bystander status with respect to drug toxicity in these cell lines. The diverse outcomes of TS inhibition with respect to nucleotide pool levels, the nature of the resulting DNA lesion, and the DNA repair response are discussed.  相似文献   

7.
Daudi (B-cell line) and Molt-3 (T-cell line) cells provide a model for the study of apoptosis, the induction of which is often accompanied by concominant modulations of proteins involved in mRNA maturation. One of these proteins is poly(A) polymerase (PAP), which is responsible for mRNA cleavage and polyadenylation. A number of recent reports also suggest involvement of mRNA maturation and stability in the induction of specific pathways of cell apoptosis. In this study we identified PAP activity levels and isoform modulations in two different cell lines (Daudi and Molt-3) and related them to DNA fragmentation (a hallmark of apoptosis) and cell cycle phase specificity in terms of the temporal sequence of events and the time that elapsed between administration of the apoptosis inducer (the widely used anticancer drug etoposide) and the observed effects. Treatment of both cell lines with 20 microg/mL etoposide induced apoptosis after four hours in Molt-3 cells and only after 24 hours in Daudi cells, as revealed by two independent methods. In Daudi cells the PAP activity levels and isoforms were downregulated prior to deltapsim reduction, DNA fragmentation and the morphological changes of the nucleus, whereas in Molt-3 cells no PAP activity and isoform modulations were observed prior to the early hallmarks of apoptosis.  相似文献   

8.
5-Fluorouracil (5-FU)-based chemotherapy as a first-line treatment is quite limited, because of its inefficiency and clinical resistance to it. The search for chemosensitizers that could augment its efficiency and overcome the drug resistance to 5-FU has kindled great interest among scientists. Selenocystine (SeC), a naturally occurring selenoamino acid, displayed broad-spectrum anticancer activity in our previous studies. This study demonstrates that SeC acts as an effective enhancer of 5-FU-induced apoptosis in A375 human melanoma cells through induction of mitochondria-mediated apoptosis with the involvement of DNA damage-mediated p53 phosphorylation and ERK inactivation. Pretreatment of the cells with SeC significantly enhanced 5-FU-induced loss of mitochondrial membrane potential (∆ψm) by regulating the expression levels of Bcl-2 family proteins. SeC and 5-FU in combination also triggered cell oxidative stress through regulation of the intracellular redox system and led to DNA damage and inactivation of ERK and AKT. Moreover, inhibitors of ERK and AKT effectively enhanced the apoptotic cell death induced by the combined treatment. However, pretreatment of the cells with glutathione reversed the apoptosis induced by SeC and 5-FU and recovered the expression of ERK and AKT inactivation, which revealed the important role of reactive oxygen species in cell apoptosis and regulation of ERK and AKT pathways. Taken together, our results suggest that a strategy of using SeC and 5-FU in combination could be a highly efficient way to achieve anticancer synergism.  相似文献   

9.
Daidzin, 4′, 7-dihydroxyisoflavone is an isoflavonic phytoestrogen present in leguminous plants. Traditional Chinese medicine utilizes daidzin to treat various diseases such diarrhea, fever, hepatitis, cardiac problems etc. In current study we examined the anticancer activity of daidzin against human cervical cancer in vitro. HeLa, human cervical cancer cell line was purchased from ATCC and the cells were cultured with DMEM medium. The cytotoxic effect of daidzin against HeLa cell line was analyzed with MTT assay. The IC-50 value was obtained at 20 µM hence the cells were treated with 20 µM of daidzin for further analysis. ROS generation was assessed with DCFH-DA staining and the induction of apoptosis was examined with Rhoadmine-123 staining. Acridine orange and ethidium bromide staining was done to examine the apoptotic and viable cells. Further the matrigel cell adhesion assay was done to analyze the inhibitory property of daidzin against cancer cell adhesion. Apoptotic induction of daidzin was examined by estimating the levels of Caspase 8 & 9 using ELISA technique. Inflammatory and cell proliferation signaling proteins were analyzed with qPCR analysis to confirm the anticancer activity of daidzin against human cervical cancer HeLa cell line. Daidzin significantly generated ROS and altered the mitochondrial membrane permeability in HeLa cell line. The results of AO/EtBr staining prove daidzin induced apoptosis in HeLa cell line and it also inhibited the cell adhesion property of HeLa which is reported in our matrigel cell adhesion assay. It also increased the caspases 8 & 9 which are key regulators of apoptosis. Daidzin significantly decreased the expression of inflammatory gene and cell proliferating signaling molecule. To, conclude our results confirm daidzin effectively decreased inflammation and induced apoptosis in human cervical cancer HeLa cell line.  相似文献   

10.
ZnO nanostructures of diverse shape were grown via a solution process with different precursors and conditions. Morphological investigation of the nanostructures was carried out using field emission scanning electron microscopy and transmission microscopy observations and revealed that the nanostructures exhibit a wurtzite phase with an ideal lattice fringe distance of approximately 0.52 nm. The powder crystallinity was examined via X-ray diffraction spectroscopy. Screening results from anticancer studies of the effects on human brain tumor U87, cervical cancer HeLa, and normal HEK cells of ZnO nanostructures of diverse shape were obtained and indicate promising activity that varies with changes in the structure and the size of the particles. Treatment-induced cell death [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and survival assay], growth inhibition, cytogenetic damage (formation of micronuclei), and apoptosis were studied as parameters for the cellular response. Treatment with nanostructures enhanced growth inhibition and cell death in a concentration-dependent manner in both U87 and HeLa cell lines. At higher concentrations (above 15.6 μg/ml) the cytotoxic effects of the nanoparticles were highly synergistic and mainly mediated through apoptosis, implying the possible interactions of lesions caused by the agents. The enhanced cell death due to nanoparticles was accompanied by a significant increase (2–3 fold at 31.25 μg/ml) in the formation of micronuclei in U87 cells. The increase in the formation of micronuclei observed after treatment indicates that these structures may interfere with the rejoining of DNA strand breaks. Among all the nanostructures, nanoparticles and sheets exhibited potent activity against both HeLa and U87 cells. However, despite potent in vitro activity, all nanostructures exhibited diminished cytotoxicity against normal human HEK cells at all effective concentrations.  相似文献   

11.
Chemically sulfated polysaccharide (S-GAP-P) was derived from water-insoluble polysaccharide of Grifola frondosa mycelia. In this research, we investigated the anticancer effects of S-GAP-P and its combination with 5-fluorouracil (5-FU) on human gastric carcinoma SGC-7901 cells. Results showed that S-GAP-P distinctly inhibited SGC-7901 cells growth in a dose-dependent manner and induced cell apoptosis evidenced by characteristic DNA ladder and sub-G0/G1 peak. Furthermore, the combination of S-GAP-P (10–50 μg/ml) with 1 μg/ml 5-FU resulted in a significant inhibition on SGC-7901 cells growth, meaning the beneficial interaction between the two drugs. All these results suggested that S-GAP-P has evident anticancer activity through apoptotic induction and could significantly accelerate the anticancer activity of 5-FU.  相似文献   

12.
It has recently been established that most anticancer drugs act through the mechanism of apoptosis. It has also been clinically confirmed that drug combinations are more effective than single drugs and various chemotherapeutic strategies have therefore been developed. The experiments described here concern the induction of apoptosis with dimethylsulfoxide (DMSO), a substance with multiple activity especially as an inducer of differentiation, and interferon (IFN), a cytokine well known for its antiviral and antineoplastic effects; they are used alone or in combination. Apoptosis may be regulated at all levels of gene expression including the addition of the poly(A) tail to the 3' end of mRNAs. Poly(A) polymerase (PAP) [EC.2.7.7.19], the enzyme that catalyzes the addition of the poly(A) tail to mRNAs, changes in the process of development, differentiation, transformation and apoptosis. In the present study the induction of HeLa cells to apoptosis (65%) with a DMSO/rIFN-alpha combination resulted in pronounced PAP dephosphorylation and activity reduction. HeLa cells induced to apoptosis (35%) with DMSO gave lower levels of PAP dephosphorylation and reduction of activity and cells induced to apoptosis (18%) with rIFN-alpha gave only limited PAP dephosphorylation and reduction of activity. The implications of these observations for chemotherapeutic drug action at the level of mRNA polyadenylation point to the possible use of PAP as a biological marker for the evaluation of this action.  相似文献   

13.
BackgroundIt has been known epidermal growth factor receptor (EGFR) frequently overexpressed in cervical cancer. High levels of EGFR expression in their tumors leads to a poor prognosis and inhibition frequently induces autophagy in cancer cells. This study aimed to investigate whether EGFR inhibition by canertinib induces autophagy and this induction influence the effect of Palladium (Pd) (II) complex and 5-fluorouracil (5-FU) especially in nontoxic doses.MethodsCytotoxicity was evaluated by using SRB assay. Apoptosis, autophagy, and EGFR key markers were determined by flow cytometry, fluorescence staining, and immunoblotting. Colony formation, invasion, and wound healing assays were performed to investigate cell proliferation, invasion, and migration, respectively.ResultsBlocking EGFR by the pan-ErbB tyrosine kinase inhibitor canertinib inhibited cell growth of HeLa cervical cancer cells in combination with Pd(II) complex and 5-FU. Combination of canertinib and Pd(II) complex promotes autophagy and apoptosis of HeLa cancer cells via blockade of the PI3K/AKT and MAPK/ERK pathway, which leads to cervical cancer cell death. ROS accumulation and DNA damage were increased after combinatorial treatment which causes depolarization of the mitochondrial inner membrane and leads to apoptotic cell death. Canertinib combined with Pd(II) complex leads to inhibition of migration and invasion.ConclusionInhibition of EGFR signaling by canertinib in combination with Pd(II) complex promotes apoptosis and autophagy via blockade of the PI3K/AKT and MAPK/ERK.General significanceThe cytotoxic activity of Pd(II) complex and 5-FU on HeLa cells is mediated by EGFR inhibition and autophagy induction, leading to activation of mitochondrial apoptotic cell death.  相似文献   

14.
Carcinoembryonic antigen (CEA) expression has been shown to protect cancer cell lines from apoptosis and anoikis. The aim of this study was to further elucidate the role of CEA expression on resistance to anticancer drugs in human colorectal cancer (CRC). We transfected CEA negative CRC cell line SW742 as well as CHO cells to overexpress CEA and their chemoresistance were assessed by MTT assay. In comparison to the parental cell lines, transfected cells had significantly increased resistance to 5-fluorouracil (5-FU). The results also showed a direct correlation between the amount of cellular CEA protein and 5-FU resistance in CEA expressing cells. We found no significant difference in sensitivity to cisplatin and methotrexate between CEA-transfected cells and their counter parental cells. We also compared the association between CEA expression and chemoresistance of 4 CRC cell lines which differed in the levels of CEA production. The CEA expression levels in monolayer cultures of these cell lines did not correlate with the 5-FU resistance. However, 5-FU treatment resulted in the selection of sub-populations of resistant cells that displayed increased CEA expression levels by increasing drug concentration. We analyzed the effect of 5-FU in a 3D multicellular culture generated from the two CRC cell lines, LS180 and HT29/219. Compared with monolayer culture, CEA production and 5-FU resistance in both cell lines were stimulated by 3D growth. In comparison to the 3D spheroids of parental CHO, we observed a significantly elevated 5-FU resistance in 3D culture of the CEA-expressing CHO transfectants. Our findings suggest that the CEA level may be a suitable biomarker for predicting tumor response to 5-FU-based chemotherapy in CRC.  相似文献   

15.
Quinazolines - 1,3-benzodiazines are biological active compounds, which are used in the phamaceutical industry, in agriculture and in the medicine. As documented in the literature, many derivatives demonstrated anticancer activity and they act as multitarget agents. 3-(5-Nitro-2-thienyl)-9-chloro-5-morpholin-4-yl[1,2,4]triazolo[4,3-c] quinazoline (NTCHMTQ) - a new synthetically prepared quinazoline derivative was the most effective derivative in our primary cytotoxic screening. In this study, we evaluated cytotoxic/antiproliferative activity of NTCHMTQ using human tumor cell line HeLa. Possible interaction of 3-(5-nitro-2-thienyl)-9-chloro-5-morpholin-4-yl[1,2,4]triazolo[4,3-c] quinazoline with calf thymus DNA was tested by the DNA - modified screen - printed electrode. Quinazoline derivative acted cytotoxically on tumor cell line HeLa. The IC(100) value was 10 microg/ml. The IC(50) values was found to be less than 4 microg/ml, a limit put forward by the National Cancer Institute (NCI) for classification of he compound as a potential anticancer drug. Quinazoline at micromolar concentrations induced morphological changes and necrosis of HeLa cells. Using the DNA based electrochemical biosensor, we have not found damage to DNA under in vitro conditions at an incubation of the biosensor in mixture with quinazoline.  相似文献   

16.
A series of novel α-aminophosphonate derivatives containing DHA structure were designed and synthesized as antitumor agents. In vitro antitumor activities of these compounds against the NCI-H460 (human lung cancer cell), A549 (human lung adenocarcinoma cell), HepG2 (human liver cancer cell) and SKOV3 (human ovarian cancer cell) human cancer cell lines were evaluated and compared with commercial anticancer drug 5-fluorouracil (5-FU), employing standard MTT assay. The pharmacological screening results revealed that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most demonstrated more potent inhibitory activities compared with the commercial anticancer drug 5-FU. The action mechanism of representative compound 7c was preliminarily investigated by acridine orange/ethidium bromide staining, Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining and flow cytometry, which indicated that the compound can induce cell apoptosis in NCI-H460 cells. Cell cycle analysis showed that compound 7c mainly arrested NCI-H460 cells in G1 stage.  相似文献   

17.
In the present study, water extract of dried fruit of Zyzyphus Jujube was tested for its possible anticancer effect and induction of apoptosis on human tumor cell lines, HEp-2, HeLa and Jurkat cell lines. The inhibitory effect of water extract of this fruit on cell proliferation was assessed by MTT colorimetric assay. The induction of apoptosis of this extract was analyzed by DNA fragmentation analysis. Zyzyphus Jujube extract showed inhibitory effects on mentioned cell lines. Jurkat leukemic line was found the most sensitive cells with IC50 of 0.1 μg mL−1. Our study also showed a typical DNA laddering in this cell line. The present study showed cytotoxic activity of Zyzyphus Jujube on tumor cells. Although Zyzyphus Jujube has useful compounds for medical applications.  相似文献   

18.
Kim KS  Cho CH  Park EK  Jung MH  Yoon KS  Park HK 《PloS one》2012,7(1):e30066
The apoptosis of cancer cells is associated with changes in the important cell properties including morphology, surface roughness and stiffness. Therefore, the changes in morphology and biophysical properties can be a good way of evaluating the anticancer activity of a drug. This study examined the effect of paclitaxel on the properties of Ishikawa and HeLa cells using atomic force microscopy (AFM), and the relationship between the changes in morphology and the biophysical properties and apoptosis was discussed. The viability and proliferation of the cells were analyzed using the methylthiazol tetrazolium (MTT) method and a TUNEL assay to confirm cellular apoptosis due to a paclitaxel treatment. AFM observations clearly showed the apoptotic morphological and biophysical changes in Ishikawa and HeLa cells. After the paclitaxel treatment, the cell membrane was torn and holed, the surface roughness was increased, and the stiffness was decreased. These changes were observed more apparently after a 24 h treatment and in Ishikawa cells compared to HeLa cells. The MTT and TUNEL assays results revealed the Ishikawa cells to be more sensitive to paclitaxel than HeLa cells and definite apoptosis occurred after a 24 h treatment. These results showed good agreement with the AFM results. Therefore, research on the morphological and biophysical changes by AFM in cancer cells will help to evaluate the anticancer activities of the drugs.  相似文献   

19.
3- and 10-Bromofascaplysins was previously found to possess cytotoxic activity. In this study, we investigated their cancer preventive and proapoptotic properties. These effects were tested on mouse skin epidermal JB6 P+ Cl41 cell line, its stable transfectants, and human tumor HL-60, THP-1, SNU-C4, SK-MEL-28, DLD-1, MDA-MB-231, and HeLa cells using a variety of assessments, including a cell viability (MTS) assay, flow cytometry, anchorage-independent soft agar assay, luciferase assay, mitochondrial permeability assay, and Western blotting. 3- and 10-Bromofascaplysins were effective at submicromolar concentrations as the anticancer agents, which exerted their action, at least in part, through the induction of caspase-8, -9, -3-dependent apoptosis.  相似文献   

20.
The apoptotic trend of the widely used cell lines HL-60, U937, HeLa, Molt-3, and K562 has been found to be accompanied and reversibly related with Poly(A) polymerase (PAP; EC 2.7.7.19) activity levels. Moreover, variations in the pattern of multiple enzyme forms are revealed, being most prominent in apoptosis-prone cell lines, HL-60 and U937. Furthermore, in heat-shocked or nutrient-deprived apoptotic U937 Percoll-fractionated subpopulations, PAP lower mobility phosphorylated forms of 106 and 100 kDa as well as enzyme activity were progressively reduced along with the appearance of higher than 80 kDa mobility species. The kinetics of these alterations (dephosphorylation, proteolysis, and activity) coincided with the appearance of DNA fragmentation. In fact, PAP dephosphorylation appears to precede the appearance of DNA fragmentation. In addition, inhibition of PAP dephosphorylation, proteolysis, and decrease in its activity were tightly coupled with the concomitant prevention of apoptosis. This novel finding yields information on a possible involvement of PAP in cell commitment and execution to apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号