首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two forms of the hepatitis delta virus ribozyme are derived from the genomic and antigenomic RNA strands of the human hepatitis delta virus (HDV), where they serve a crucial role in pathogen replication by catalyzing site-specific self-cleavage reactions. The HDV ribozyme requires divalent metal ions for formation of its tertiary structure, consisting of a tight double-nested pseudoknot, and for efficient self- (or cis-) cleavage. Comparison of recently solved crystal structures of the cleavage precursor and 3' product indicates that a significant conformational switch is required for catalysis by the genomic HDV ribozyme. Here, we have used the lanthanide metal ion terbium(III) to footprint the precursor and product solution structures of the cis-acting antigenomic HDV ribozyme. Inhibitory Tb(3+) binds with high affinity to similar sites on RNA as Mg(2+) and subsequently promotes slow backbone scission. We find subtle, yet significant differences in the terbium(III) footprinting pattern between the precursor and product forms of the antigenomic HDV ribozyme, consistent with differences in conformation as observed in the crystal structures of the genomic ribozyme. In addition, UV melting profiles provide evidence for a less tight tertiary structure in the precursor. In both the precursor and product we observe high-affinity terbium(III) binding sites in joining sequence J4/2 (Tb(1/2) approximately 4 microM) and loop L3, which are key structural components forming the catalytic core of the HDV ribozyme, as well as in several single-stranded regions such as J1/2 and the L4 tetraloop (Tb(1/2) approximately 50 microM). Sensitized luminescence spectroscopy confirms that there are at least two affinity classes of Tb(3+) binding sites. Our results thus demonstrate that a significant conformational change accompanies catalysis in the antigenomic HDV ribozyme in solution, similar to the catalytic conformational switch observed in crystals of the genomic form, and that structural and perhaps catalytic metal ions bind close to the catalytic core.  相似文献   

2.
3.
4.
To determine the sequence requirements and structural features of the self-cleavage domain of hepatitis delta virus (HDV) antigenomic RNA, we constructed a series of mutants and measured the rate constant of the cleavage reaction for each. The self-cleavage activity of HDV RNA of antigenomic sense was found to reside in a region of less than 90 nucleotides in length. The catalytic domain contained a long complementary sequence which could be deleted to half of its original size. Moreover, this region could be replaced by other sequences as long as they could fold into a stem-and-loop structure. The catalytic domain also required a 6-basepair helix adjacent to the cleaving point for activity. The structural features of these two base-pairing regions are quite similar to those of the HDV genomic self-cleavage domain. The cleavage site as well as the the hinge region (the sequence between the two stems) requires specific sequences for activity.  相似文献   

5.
The genomic and antigenomic RNAs of hepatitis delta virus are capable of self-cleavage and show no significant sequence similarities to other known self-cleaving RNAs. We have derived an antigenomic delta RNA which cleaves to completion in 15 s in 9 mM magnesium at 37 degrees C and is capable of efficient self-cleavage in concentrations of formamide as high as 20 M. Cleavage in high concentrations of denaturant is dependent upon the presence of a polypurine sequence element, GGAGA, located between 81 and 85 nucleotides downstream of the cleavage site. Mutation of the initial G81G82 to C81C82, or removal of the sequence element, results in a loss of the ability to cleave in high formamide concentrations. Changing the final U-2C-1 of a pyrimidine-rich region, UCUUC, just upstream of the cleavage site, to G-2G-1 severely affects the self-cleavage, but introducing the two mutations, GG to CC and UC to GG, into the same molecule, restoring potential base pairing, partially restores the formamide stability. Relocating the GGAGA sequence upstream of the cleavage site also results in partial restoration of the formamide cleavage. Although the GGAGA sequence is important for self-cleavage under denaturing conditions, it does not appear to be necessary for HDV RNA cleavage in normal buffer conditions.  相似文献   

6.
The ribozyme self-cleavage site in the antigenomic sequence of hepatitis delta virus (HDV) RNA is 33-nt downstream of the poly(A) site for the delta antigen mRNA. An HDV antigenomic ribozyme precursor RNA that included the upstream poly(A) processing site was used to test the hypothesis that nonribozyme sequence near the poly(A) site could affect ribozyme activity. Relative to ribozyme precursor without the extra upstream sequences, the kinetic profile for self-cleavage of the longer precursor was altered in two ways. First, only half of the precursor RNA self-cleaved. The cleaved fraction could be increased or decreased with mutations in the upstream sequence. These mutations, which were predicted to alter the relative stability of competing secondary structures within the precursor, changed the distribution of alternative RNA structures that are resolved in native-gel electrophoresis. Second, the active fraction cleaved with an observed rate constant that was higher than that of the ribozyme without the upstream sequences. Moreover, the higher rate constants occurred at lower, near-physiological, divalent metal ion concentrations (1–2 mM). Modulation of ribozyme activity, through competing alternative structures, could be part of a mechanism that allows a biologically significant choice between maturation of the mRNA and processing of replication intermediates.  相似文献   

7.
We synthesized two types of chimeric RNAs between the catalytic RNA subunit of RNase P from Escherichia coli (M1 RNA) and a tRNA precursor (pre-tRNA); one had pre-tRNA at the 3' side to the M1 RNA (M1 RNA-pre-tRNA). The second had pre-tRNA at the 5' side of the M1 RNA (pre-tRNA-M1 RNA). Both molecules were self-cleaving RNAs. The self-cleavage of M1 RNA-pre-tRNA occurred at the normal site (5'-end of mature tRNA sequence) and proceeded under the condition of 10 mM Mg2+ concentration. This reaction at 10 mM Mg2+ was an intramolecular reaction (cis-cleavage), while, at 40 mM and 80 mM Mg2+, trans-cleavage partially occurred. The self-cleavage rate was strictly affected by the distance between the M1 RNA and the pre-tRNA in the molecule. The self-cleavage of pre-tRNA-M1 RNA occurred mainly at three sites within the mature tRNA sequence. This cleavage did not occur at 10 mM Mg2+. Use of M1 RNA-pre-tRNA molecule for the in vitro evolution of M1 RNA is discussed.  相似文献   

8.
Perrotta AT  Been MD 《Biochemistry》2007,46(17):5124-5130
The two ribozymes of hepatitis delta virus (HDV) cleave faster in divalent metal ions than in monovalent cations, and a variety of divalent metal ions can act as catalysts in supporting these higher rates. Although the ribozymes are closely related in sequence and structure, they display a different metal ion preference; the genomic form cleaves moderately faster in Mg2+ than in Ca2+ while the reverse is true for the antigenomic ribozyme. This difference raises questions about understanding the catalytic role of the metal ion in the reaction. We found that the metal ion reactivity preference correlated with the identity of a single nucleotide 5' of the cleavage site (-1 position). It is a U in the genomic sequence and a C in the antigenomic sequence. With both ribozymes, the reactivity preference for Mg2+ and Ca2+ could be reversed with a change at this position (C to U or U to C). Moreover, with an A at position -1, there was a relative increase in cleavage rates in low concentrations of Mn2+ for both ribozymes. Metal ion reactivity preference was also linked to changes in pH, and the pH-rate profiles could be shifted with nucleotide changes at position -1. Together, the data provide biochemical evidence in support of an organized active site, as seen in the crystal structures, where at least one metal ion, an ionizable group, and the conformation of the phosphate backbone at the cleavage site interact in concert to promote cleavage.  相似文献   

9.
Hepatitis delta virus (HDV) replicates by a double rolling-circle mechanism that requires self-cleavage by closely related genomic and antigenomic versions of a ribozyme. We have previously shown that the uncleaved genomic ribozyme is subject to a variety of alternative (Alt) pairings. Sequence upstream of the ribozyme can regulate self-cleavage activity by formation of an Alt 1 ribozyme-containing structure that severely inhibits self-cleavage, or a P(-1) self-structure that permits rapid self-cleavage. Here, we test three other alternative pairings: Alt P1, Alt 2, and Alt 3. Alt P1 and Alt 3 contain primarily ribozyme-ribozyme interactions, while Alt 2 involves ribozyme-flanking sequence interaction. A number of single and double mutant ribozymes were prepared to increase or decrease the stability of the alternative pairings, and rates of self-cleavage were determined. Results of these experiments were consistent with the existence of the proposed alternative pairings and their ability to inhibit the overall rate of native ribozyme folding. Local misfolds are treated as internal equilibrium constants in a binding polynomial that modulates the intrinsic rate of cleavage. This model of equilibrium effects of misfolds should be general and apply to other ribozymes. All of the alternative pairings sequester a pseudoknot-forming strand. Folding of ribozymes containing Alt P1 and Alt 2 was accelerated by urea as long as the native ribozyme fold was sufficiently stable, while folding of mutants in which both of these alternative pairings had been removed were not stimulated by urea. This behavior suggests that the pseudoknots form by capture of an unfolded or appropriately rearranged alternative pairing by its complementary native strand. Fast-folding mutants were prepared by either weakening alternative pairings or by strengthening native pairings. A kinetic model was developed that accommodates these features and explains the position of the rate-limiting step for the G11C mutant. Implications of these results for structural and dynamic studies of the uncleaved HDV ribozyme are discussed.  相似文献   

10.
Probing the hammerhead ribozyme structure with ribonucleases.   总被引:2,自引:0,他引:2       下载免费PDF全文
Susceptibility to RNase digestion has been used to probe the conformation of the hammerhead ribozyme structure prepared from chemically synthesised RNAs. Less than about 1.5% of the total sample was digested to obtain a profile of RNase digestion sites. The observed digestion profiles confirmed the predicted base-paired secondary structure for the hammerhead. Digestion profiles of both cis and trans hammerhead structures were nearly identical which indicated that the structural interactions leading to self-cleavage were similar for both systems. Furthermore, the presence or absence of Mg2+ did not affect the RNase digestion profiles, thus indicating that Mg2+ did not modify the hammerhead structure significantly to induce self-cleavage. The base-paired stems I and II in the hammerhead structure were stable whereas stem III, which was susceptible to digestion, appeared to be an unstable region. The single strand domains separating the stems were susceptible to digestion with the exception of sites adjacent to guanosines; GL2.1 in the stem II loop and G12 in the conserved GAAAC sequence, which separates stems II and III. The absence of digestion at GL2.1 in the stem II hairpin loop of the hammerhead complex was maintained in uncomplexed ribozyme and in short oligonucleotides containing only the stem II hairpin region. In contrast, the G12 site became susceptible when the ribozyme was not complexed with its substrate. Overall the results are consistent with the role of Mg2+ in the hammerhead self-cleavage reaction being catalytic and not structural.  相似文献   

11.
The sequence requirements for self-cleavage of hepatitis delta virus genomic RNA were examined using precursor RNAs which were labeled at either the 5' or 3' ends and progressively deleted from the unlabeled end. In the presence of 50% formamide, which enhances self-cleavage in 2 mM MgCl2 at 37 degrees C, 84 nucleotides (nt) 3' of the break site were required. In the absence of formamide the minimum was reduced to 82 nt. Under both sets of conditions, precursors with 1 nt 5' to the break site cleaved. These results allowed two condition-dependent minimal domains for self-cleavage to be defined. However, in the absence of formamide, sequences flanking the minimal domain inhibited cleavage, possibly through involvement in the formation of non-cleaving structures. These data are consistent with the idea that cleavage in vivo could be regulated by alternative RNA structures.  相似文献   

12.
Prior studies of the metal ion dependence of the self-cleavage reaction of the HDV genomic ribozyme led to a mechanistic framework in which the ribozyme can self-cleave by multiple Mg2+ ion-independent and -dependent channels [Nakano et al. (2001) Biochemistry 40, 12022]. In particular, channel 2 involves cleavage in the presence of a structural Mg2+ ion without participation of a catalytic divalent metal ion, while channel 3 involves both structural and catalytic Mg2+ ions. In the present study, experiments were performed to probe the nature of the various divalent ion sites and any specificity for Mg2+. A series of alkaline earth metal ions was tested for the ability to catalyze self-cleavage of the ribozyme under conditions that favor either channel 2 or channel 3. Under conditions that populate primarily channel 3, nearly identical K(d)s were obtained for Mg2+, Ca2+, Ba2+, and Sr2+, with a slight discrimination against Ca2+. In contrast, under conditions that populate primarily channel 2, tighter binding was observed as ion size decreases. Moreover, [Co(NH3)6]3+ was found to be a strong competitive inhibitor of Mg2+ for channel 3 but not for channel 2. The thermal unfolding of the cleaved ribozyme was also examined, and two transitions were found. Urea-dependent studies gave m-values that allowed the lower temperature transition to be assigned to tertiary structure unfolding. The effects of high concentrations of Na+ on the melting temperature for RNA unfolding and the reaction rate revealed ion binding to the folded RNA, with significant competition of Na+ (Hill coefficient of 1.5-1.7) for a structural Mg2+ ion and an unusually high intrinsic affinity of the structural ion for the RNA. Taken together, these data support the existence of two different classes of metal ion sites on the ribozyme: a structural site that is inner sphere with a major electrostatic component and a preference for Mg2+, and a weak catalytic site that is outer sphere with little preference for a particular divalent ion.  相似文献   

13.
The small hepatitis delta virus (HDV) antigen (SHDAg) plays an essential role in HDV RNA double-rolling-circle replication. Several posttranslational modifications (PTMs) of HDAgs, including phosphorylation, acetylation, and methylation, have been characterized. Among the PTMs, the serine 177 residue of SHDAg is a phosphorylation site, and its mutation preferentially abolishes HDV RNA replication from antigenomic RNA to genomic RNA. Using coimmunoprecipitation analysis, the cellular kinases extracellular signal-related kinases 1 and 2 (ERK1/2) are found to be associated with the Flag-tagged SHDAg mutant (Ser-177 replaced with Cys-177). In an in vitro kinase assay, serine 177 of SHDAg was phosphorylated directly by either Flag-ERK1 or Flag-ERK2. Activation of endogenous ERK1/2 by a constitutively active MEK1 (hemagglutinin-AcMEK1) increased phosphorylation of SHDAg at Ser-177; this phosphorylation was confirmed by immunoblotting using an antibody against phosphorylated S177 and mass spectrometric analysis. Interestingly, we found an increase in the HDV replication from antigenomic RNA to genomic RNA but not in that from genomic RNA to antigenomic RNA. The Ser-177 residue was critical for SHDAg interaction with RNA polymerase II (RNAPII), the enzyme proposed to regulate antigenomic RNA replication. These results demonstrate the role of ERK1/2-mediated Ser-177 phosphorylation in modulating HDV antigenomic RNA replication, possibly through RNAPII regulation. The results may shed light on the mechanisms of HDV RNA replication.  相似文献   

14.
In elucidating functionally important single-stranded loop regions derived mainly from three models in genomic hepatitis delta virus (HDV) ribozyme possessing self-cleavage activity, we have constructed several internal deletion variants of the HDV133 molecule (654-786 nt on genomic RNA) by oligonucleotide-directed mutagenesis. When self-cleavage activities were compared among variants, the HDV133DI-1 (deletion of 701-718 nt) and HDV133DI-3 (deletion of 740-752 nt) ribozyme could maintain their self-cleavage activity, despite at reduced level. However, the activity could be regained in both mutants by some extent under partially denaturing conditions. These results suggest that the above two single-stranded RNA loop regions in HDV ribozyme are not part of the catalytic core but might be involved in the stability of the molecule. In contrast, deletion mutants such as HDV133DI-2 (deletion of 696-722 nt), HDV88DI-1 (deletion of 701-718 nt), HDV88DI-2 (deletion of 696-722 nt), and HDV88DI-4 (deletion of 733-760 nt) abolished catalytic activity. These results suggest that the remaining single-stranded regions of bases between 726-731 and 762-766 in the HDV88 ribozyme may be the potential regions to interact with Mg2+ ions.  相似文献   

15.
16.
Sar RNA is an antisense RNA that is partly responsible for the negative regulation of antirepressor synthesis during development of bacteriophage P22 (Liao SM et al., 1987, Genes & Dev 1:197-203; Wu Th, Liao SM, McClure WR, Susskind MM, Genes & Dev 1:204-212). The structures of sar RNA and its target, ant mRNA, were probed using limited RNase digestion as a function of Mg2+ concentration. Sar RNA forms two hairpins that are present at all Mg2+ concentrations (Mg2+-independent hairpins). One of the hairpins contains three tandem U x U base pairs. Ant RNA forms three Mg2+-independent hairpins and one Mg2+-dependent hairpin. In addition, many nucleotides in sar RNA and ant RNA appear to be involved in tertiary interactions. The effects of RNA structure on the pairing reaction are considered in the accompanying paper (Schaefer KL, McClure WR, 1997, RNA 3:157-174).  相似文献   

17.
Hepatitis delta virus (HDV) is a small RNA virus that contains one 1.7-kb single-stranded circular RNA of negative polarity. The HDV particle also contains two isoforms of hepatitis delta antigen (HDAg), small (SHDAg) and large HDAg. SHDAg is required for the replication of HDV, which is presumably carried out by host RNA-dependent RNA polymerases. The localization and the HDAg and host RNA polymerase responsible for HDV replication remain important issues to be addressed. In this study, using recombinant SHDAg fused with a heterologous nucleolar localization sequence (NoLS) to confine its subcellular localization in nucleoli, we aimed to study the effect of SHDAg subcellular localization on HDV RNA replication. The initiation of genomic RNA synthesis from antigenomic template was hardly detectable when SHDAg was fused with the NoLS motif and localized mainly in nucleoli. In contrast, the initiation of antigenomic RNA synthesis was not affected. Drug treatment to release a SHDAg-NoLS mutant from nucleoli could partially restore the replication of HDV genomic RNA from antigenomic RNA. This also recovered the cointeraction between SHDAg and RNA polymerase II. These data strongly suggest that nuclear polymerase (RNA polymerase II) is involved in the synthesis of genomic RNA and that the synthesis of antigenomic RNA can occur in nucleoli. Our results support the idea that the replication of HDV genomic RNA or antigenomic RNA is likely to be carried out by different machineries in different subcellular localizations.  相似文献   

18.
The ribozymes derived from Hepatitis delta virus (HDV) RNA appear unique in their sequence requirements for self-cleavage. While truncating the 1679 nucleotide antigenomic HDV RNA, we have characterized the cleavage requirements of a number of ribozymes of intermediate length. Two of these, containing 186 and 106 HDV nucleotides respectively, cleaved to completion in the presence of 18 M formamide. The 186 nucleotide ribozyme also cleaved to completion in 10 M urea. Removal of an additional 10 nts from the 3' terminus of the 106 nt ribozyme resulted in a loss of the ability to cleave in high concentrations of the denaturants. The interaction of nucleotides near the cleavage site with a sequence within this 10 base region may confer unusual stability on these ribozymes.  相似文献   

19.
To identify the divalent metal ions that can support the self-cleavage activity of the genomic ribozyme of human hepatitis delta virus (HDV), we tested the activity of various divalent metal ions in the ribozyme reactions catalyzed by HDV88 (683-770 nt) and 88DI3 (HDV88 with the sequence from 740-752 nt deleted). Among various metal ions tested, Mg2+, Mn2+, Ca2+ and Sr2+ efficiently supported the self-cleavage reactions of the HDV88 and 88DI3 ribozymes. In the case of the 88DI3 ribozyme, other divalent metal ions, such as Cd2+, Ba2+, Co2+, Pb2+ and Zn2+, were also able to support the self-cleavage reaction to some extent (< 10%). In the presence of spermidine (0.5 mM), the cleavage reaction was promoted at lower concentrations of effective divalent metal ions. The HDV ribozyme represents the only example of ribozyme to date of a ribozyme that catalyzes the self-cleavage reaction in the presence of Ca2+ ions as efficiently as it does in the presence of Mg2+ ions.  相似文献   

20.
The precursor of an RNA molecule from T4-infected E. coli cells (p2Sp1 RNA) has the capacity to cleave itself at specific positions [(UpA (139-140) and CpA (170-171)], within a putative loop and stem structure. This sequence-specific cleavage requires at least a monovalent cation and non-ionic detergents. We studied the self-cleavage reaction of an RNA fragment (GUUUCGUACAAAC) (R1) with the sequence corresponding to the p2Sp1 RNA in the presence of Mg2+ and non-ionic detergents. It requires Mg2+ and is aided by a non-ionic detergent, Brij 58. The cleavage reaction is time, temperature, and pH-dependent. The cleavage occurs at the phosphodiester bond between UpA and CpA on the RNA fragment (GUUUCGUACAAAC) (R1). Furthermore, the maximum of cleavage of R1 occurs at a very low Mg2+ concentration (< or = 5 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号