首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida and Aspergillus species are important causes of opportunistic infection in an ever-growing number of vulnerable patients, and these infections are associated with high mortality. This has partly been attributed to the emerging resistance of pathogenic fungi to antifungal therapy, which potentially compromises the management of infected patients. Multi-azole resistance of Aspergillus fumigatus is a current health problem, as well as is the co-resistance of Candida glabrata to both azoles and echinocandins. In most cases, negative clinical consequences of reduced in vitro fungal susceptibility to azoles and/or echinocandins can be traced to acquisition of particular resistance mechanisms. While strategies using antifungal combinations or adjunctive agents that maximize the efficacy of existing antifungals may limit treatment failures, new therapeutic approaches, including antifungal agents with novel mechanisms of action, are urgent. In the meantime, more efforts should be devoted to close monitoring of antifungal resistance and its evolution in the clinical setting.  相似文献   

2.
Undeniably, new antifungal treatments are necessary against pathogenic fungi. Fungal infections have significantly increased in recent decades, being highlighted as important causes of morbidity and mortality, particularly in immunocompromised patients. Five main antifungal classes are used: (i) azoles, (ii) echinocandins, (iii) polyenes, (iv) allylamines and (v) pyrimidine analogues. Moreover, the treatment of mycoses has several limitations, such as undesirable side effects, narrow activity spectrum, a small number of targets and fungal resistance, which are still of major concern in clinical practice. The discovery of new antifungals is mostly achieved by the screening of natural or synthetic/semisynthetic chemical compounds. The most recent discoveries in drug resistance mechanism and their avoidance were explored in a review, focusing on different antifungal targets, as well as new agents or strategies, such as combination therapy, that could improve antifungal therapy.

Significance and Impact of the Study

The failure to respond to antifungal therapy is complex and is associated with microbiological resistance and increased expression of virulence in fungal pathogens. Thus, this review offers an overview of current challenges in the treatment of fungal infections associated with increased antifungal drug resistance and the formation of biofilms in these opportunistic pathogens. Furthermore, the most recent and potential strategies to combat fungal pathogens are explored here, focusing on new agents as well as innovative approaches, such as combination therapy between antifungal drugs or with natural compounds.  相似文献   

3.
伍浩  孙娟娟  方婷  李立平  安毛毛  姜远英 《菌物学报》2020,39(11):2161-2171
近20多年来,随着免疫缺陷患者的增多,侵袭性真菌感染发病率呈持续上升趋势,死亡率高居不下。现用的抗真菌药物主要有氮唑类、多烯类、棘白菌素类等,存在品种少、真菌耐药性增加和毒副作用大等问题,迫切需要研制新型抗真菌药物。单克隆抗体具有精准靶向的抗真菌作用,兼有调节机体免疫反应的功能,是治疗真菌感染的一种可行且具有独特优势的药物。从作用靶点分类,可以分为靶向真菌表面多糖、毒力因子、蛋白和跨界抗真菌单克隆抗体。从抗体来源分类又可以分为天然抗体和重组抗体。其作用机制包括直接抗真菌作用,即对毒素中和或对真菌的直接抑制作用;以及免疫增强作用,主要是补体的活化以驱动吞噬细胞清除或破坏致病真菌、中性粒细胞调理吞噬作用的激活以及诱导巨噬细胞调理吞噬。本文从药效学等方面总结了目前抗真菌感染单克隆抗体的研究进展,以及存在的问题。此外,针对抗真菌单克隆抗体的新型制备方法与传统制备方法进行了对比,并探讨了未来的发展方向。  相似文献   

4.
Candida albicans is the most virulent Candida species of medical importance, which presents a great threat to immunocompromised individuals such as HIV patients. Currently, there are only four classes of antifungal agents available for treating fungal infections: azoles, polyenes, pyrimidines, and echinocandins. The fast spread of multidrug resistant C. albicans strains has increased the demand for new antifungal drugs. In this study, we demonstrate the antifungal activity of brominated furanones on C. albicans. Studying the structure and activity of this class of furanones reveals that the exocyclic vinyl bromide conjugated with the carbonyl group is the most important structural element for fungal inhibition. Furthermore, gene expression analysis using DNA microarrays showed that 3 μg/mL of 4-bromo-5Z-(bromomethylene)-3-butylfuran-2-one (BF1) upregulated 32 C. albicans genes with functions of stress response, NADPH dehydrogenation, and small-molecule transport, and repressed 21 genes involved mainly in cell-wall maintenance. Interestingly, only a small overlap is observed between the gene expression changes caused by the representative brominated furanone (BF1) in this study and other antifungal drugs reported in literature. This result suggests that brominated furanones and other antifungal drugs may target different fungal proteins or genes. The existence of such new targets provides an opportunity for developing new agents to control fungal pathogens which are resistant to currently available drugs.  相似文献   

5.
The extensive use of azole antifungal agents has promoted the resistance of Candida spp to these drugs. Candida glabrata is a problematic yeast because it presents a high degree of primary or secondary resistance to fluconazole. In Brazil, C. glabrata has been less studied than other species. In this paper, we compared the activity of three major classes of antifungal agents (azoles, echinocandins and polyenes) against fluconazole-susceptible (FS) and fluconazole-resistant (FR) C. glabrata strains. Cross-resistance between fluconazole and voriconazole was remarkable. Among the antifungal agents, the echinocandins were the most effective against FS and FR C. glabrata and micafungin showed the lowest minimal inhibitory concentrations.  相似文献   

6.
Resistance of human fungal pathogens to antifungal drugs   总被引:10,自引:0,他引:10  
Resistance mechanisms can be engaged in clinically relevant fungal pathogens under different conditions when exposed to antifungal drugs. Over past years, active research was undertaken in the understanding of the molecular basis of antifungal drug resistance in these pathogens, and especially against the class of azole antifungals. The isolation of various alleles of the gene encoding the target of azoles has enabled correlation of the appearance of resistance with distinct mutations. Resistance mechanisms to azoles also converge to the upregulation of multidrug transporter genes, whose products have the capacity to extrude from cells several chemically unrelated antifungal agents and toxic compounds. Genome-wide studies of azole-resistant isolates are now permitting a more comprehensive analysis of the impact of resistance on gene expression, and may deliver new clues to their mechanisms. Several laboratories are also exploring, as well as possible alternative resistance pathways, the role of biofilm formation by several fungal species in the development of resistance to various antifungals, including azoles.  相似文献   

7.
Three classes of antifungals—polyenes, extended-spectrum azoles, and echinocandins—are now available for treating systemic fungal infections. Guidance for the appropriate use of this expanded variety of antifungals may come from recent clinical trials. Extended-spectrum azoles have excellent in vitro activity against Aspergillus and have been shown to improve clinical outcomes. For Zygomycetes, along with the lipid formulations of amphotericin, of the new agents, only posaconazole has activity. For Candida, the echinocandins offer a broad spectrum of activity. These new agents offer less toxicity and potentially improved efficacy in these difficult infections.  相似文献   

8.
白念珠菌耐药的分子机制研究进展   总被引:4,自引:0,他引:4  
近年来,免疫受损人群不断增多,该人群念珠菌病发病率呈上升趋势。随着抗真菌药物的广泛应用,临床分离到的白念珠菌耐药株增多,有关白念珠菌对抗真菌药物的耐药机制的研究又有了进一步的进展。就白念珠菌对唑类、多烯类、5-氟胞嘧啶、棘白菌素类等抗真菌药物的耐药机制方面的研究进展,作了介绍。  相似文献   

9.
A variety of oral and topical antifungal agents are available for the treatment of superficial fungal infections caused by dermatophytes. This review builds on the antifungal therapy update published in this journal for the first special issue on Dermatophytosis (Gupta and Cooper 2008;166:353–67). Since 2008, there have not been additions to the oral antifungal armamentarium, with terbinafine, itraconazole, and fluconazole still in widespread use, albeit for generally more severe or recalcitrant infections. Griseofulvin is used in the treatment of tinea capitis. Oral ketoconazole has fallen out of favor in many jurisdictions due to risks of hepatotoxicity. Topical antifungals, applied once or twice daily, are the primary treatment for tinea pedis, tinea corporis/tinea cruris, and mild cases of tinea unguium. Newer topical antifungal agents introduced include the azoles, efinaconazole, luliconazole, and sertaconazole, and the oxaborole, tavaborole. Research is focused on developing formulations of existing topical antifungals that utilize novel delivery systems in order to enhance treatment efficacy and compliance.  相似文献   

10.
In an attempt to find novel azole antifungal agents with improved activity and broader spectrum, computer modeling was used to design a series of new azoles with piperidin-4-one O-substituted oxime side chains. Molecular docking studies revealed that they formed hydrophobic and hydrogen-bonding interactions with lanosterol 14α-demethylase of Candida albicans (CACYP51). In vitro antifungal assay indicates that most of the synthesized compounds showed good activity against tested fungal pathogens. In comparison with fluconazole, itraconazole and voriconazole, several compounds (such as 10c, 10e, and 10i) show more potent antifungal activity and broader spectrum, suggesting that they are promising leads for the development of novel antifungal agents.  相似文献   

11.
Antifungal therapy during pregnancy and lactation is challenging because of a lack of data on efficacy and safety, coupled with reports of teratogenicity. Although the Food and Drug Administration pregnancy category provides guidance regarding a drug’s potential fetal risks, limitations such as lack of a specific toxic dose or predisposing pregnancy trimester thwart its application. Central to the selection of optimal antifungal therapy are exploration of the literature and assessment of patient-specific factors, including awareness of effects on the pharmacokinetics of antifungal agents that result from physiologic changes during pregnancy. Topical azoles are favored for superficial fungal infections during pregnancy and lactation, whereas amphotericin B is preferred for invasive fungal infections. Data regarding the use of antifungal agents by breastfeeding women are lacking. More studies are needed, particularly with newer antifungals, to better guide clinicians in selecting optimal antifungal therapy that will provide benefit to the mother without harm to the fetus.  相似文献   

12.
While the orally-active azoles such as fluconazole and posaconazole are effective antifungal agents, they potently inhibit a broad range of off-target human cytochrome P450 enzymes (CYPs) leading to various safety issues (e.g., drug-drug interactions, liver, and reproductive toxicities). Recently we described the rationally-designed, antifungal agent VT-1161 that is more selective for fungal CYP51 than related human CYP enzymes such as CYP3A4. Herein, we describe the use of a homology model of Aspergillus fumigatus to design and optimize a novel series of highly selective, broad spectrum fungal CYP51 inhibitors. This series includes the oral antifungal VT-1598 that exhibits excellent potency against yeast, dermatophyte, and mold fungal pathogens.  相似文献   

13.
Fungi can protect themselves from host defences and antifungal drugs by the production of an extracellular hydrophobic matrix. Candida biofilms exhibit resistance to antifungal agents from all classes including the azoles, echinocandins, amphotericin B complex, and flucytosine. Although demonstrated on polystyrene and bronchial epithelia cells, until today, only indirect evidence for A. fumigatus biofilms in patients is available. The antifungals with the most activity against biofilms are the liposomal formulation of amphotericin B and agents in the echinocandin drug class. Importantly, echinocandins show excellent anti-biofilm activity against C. albicans at therapeutic concentrations. However, other biofilms formed by moulds, including A. fumigatus, are relatively resistant to echinocandins. Multiple mechanisms contribute to the intrinsic and acquired antifungal resistance during the different stages of fungal biofilm development. During the growth phase of the early biofilm various factors account for biofilm resistance. Combinational and sequential antifungal therapy as well as combination with enhancers can improve the effect of a single drug. Further studies are warranted to develop new therapeutic strategies targeting fungal biofilm-specific resistance mechanisms.  相似文献   

14.
While the orally-active azoles such as voriconazole and itraconazole are effective antifungal agents, they potently inhibit a broad range of off-target human cytochrome P450 enzymes (CYPs) leading to various safety issues (e.g., drug–drug interactions, liver toxicity). Herein, we describe rationally-designed, broad-spectrum antifungal agents that are more selective for the target fungal enzyme, CYP51, than related human CYP enzymes such as CYP3A4. Using proprietary methodology, the triazole metal-binding group found in current clinical agents was replaced with novel, less avid metal-binding groups in concert with potency-enhancing molecular scaffold modifications. This process produced a unique series of fungal CYP51-selective inhibitors that included the oral antifungal 7d (VT-1161), now in Phase 2 clinical trials. This series exhibits excellent potency against key yeast and dermatophyte strains. The chemical methodology described is potentially applicable to the design of new and more effective metalloenzyme inhibitor treatments for a broad array of diseases.  相似文献   

15.
Molecular basis of resistance to azole antifungals   总被引:12,自引:0,他引:12  
The increased incidence of invasive mycoses and the emerging problem of antifungal drug resistance has prompted investigations of the underlying molecular mechanisms, particularly for the azole compounds central to current therapy. The target site for the azoles is the ERG11 gene product, the cytochrome P450 lanosterol 14alpha-demethylase, which is part of the ergosterol biosynthetic pathway. The resulting ergosterol depletion renders fungal cells vulnerable to further membrane damage. Development of azole resistance in fungi may occur through increased levels of the cellular target, upregulation of genes controlling drug efflux, alterations in sterol synthesis and decreased affinity of azoles for the cellular target. Here, we review the adaptative changes in fungi, in particular Candida albicans, in response to inhibitors of ergosterol biosynthesis. The molecular mechanisms of azole resistance might help in devising more effective antifungal therapies.  相似文献   

16.
Invasive fungal infections remain significant clinical challenges and are associated with high morbidity and mortality in immunocompromised patients. Despite the availability of new antifungal agents, response rates against many of these infections remain suboptimal. In addition, many of the clinically available agents have limited oral bioavailability, are associated with adverse effects due to similarities between fungal and mammalian cells, or have significant drug-drug interactions. For these reasons, there is great interest in developing new antifungal drugs, including those with novel mechanisms of action. This article reviews the pharmacology, in vitro activity, and in vivo effectiveness of new antifungal agents, including members of new classes with novel mechanisms of action and at various stages of preclinical and clinical development. These agents include the triazole isavuconazole, the echinocandin aminocandin, the histone deacetylase inhibitor MGCD290, and the sordarin derivative FR290581.  相似文献   

17.
Systemic fungal infections are increasing in prevalence, especially in immunocompromised patients and post-surgical patients. The rise in systemic fungal infections has resulted in increased utilization of antifungal agents which, in turn, has contributed to escalating resistance rates as seen by the increasing number of fungal pathogens added to the Centers for Disease Control and Prevention Antimicrobial Resistance Threats Report in 2019. Unfortunately, there are few novel antifungal agents coming to market to combat these ever-increasing resistance rates. In this review, we cover the current climate of antifungal agents and explore agents coming through the pipeline and potentially to market. We also discuss the indicated uses for empiric and targeted antifungal therapies as well as the need to include antifungal agents as a part of antimicrobial stewardship programs that focus heavily on antibacterial agents.  相似文献   

18.
Increase in invasive fungal infections over the past few years especially in immunocompromised patients prompted the search for new antifungal agents with improved efficacy. Current antifungal armoury includes very few effective drugs like Amphotericin B; new generation azoles, including voriconazole and posaconazole; echinocandins like caspofungin and micafungin to name a few. Azole class of antifungals which target the fungal cell membrane are the first choice of treatment for many years because of their effectiveness. As the fungal cell membrane is predominantly made up of sterols, glycerophospholipids and sphingolipids, the role of lipids in pathogenesis and target identification for improved therapeutics were largely pursued by researchers during the last few years. Present review focuses on cell membrane as an antifungal target with emphasis on membrane biogenesis, structure and function of cell membrane, cell membrane inhibitors, screening assays, recent advances and future prospects.  相似文献   

19.
Systemic fungal infections contribute to at least 10% of deaths in hospital settings. Most antifungal drugs target ergosterol (polyenes) or its biosynthetic pathway (azoles and allylamines), or beta-glucan synthesis (echinocandins). Antifungal drugs that target proteins are prone to the emergence of resistant strains. Identification of genes whose mutations lead to targeted resistance can provide new information on those pathways. We used Aspergillus nidulans as a model system to exploit its tractable sexual cycle and calcofluor white as a model antifungal agent to cross-reference our results with other studies. Within 2 weeks from inoculation on sublethal doses of calcofluor white, we isolated 24 A. nidulans adaptive strains from sectoring colonies. Meiotic analysis showed that these strains had single-gene mutations. In each case, the resistance was specific to calcofluor white, since there was no cross-resistance to caspofungin (echinocandin). Mutation sites were identified in two mutants by next-generation sequencing. These were confirmed by reengineering the mutation in a wild-type strain using a gene replacement strategy. One of these mutated genes was related to cell wall synthesis, and the other one was related to drug metabolism. Our strategy has wide application for many fungal species, for antifungal compounds used in agriculture as well as health care, and potentially during protracted drug therapy once drug resistance arises. We suggest that our strategy will be useful for keeping ahead in the drug resistance arms race.  相似文献   

20.
The azoles are the prominent broad spectrum oral antifungal agents in use or under clinical investigation for the systemic mycoses. This class of antifungal agents is represented by the marketed drug ketoconazole (Nizoral) and the experimental triazoles furthest along in clinical trials in the United States, itraconazole and fluconazole. Ketoconazole use is limited by its side effect profile and activity spectrum. Itraconazole appears to be better tolerated and less toxic to liver function, does not cause adrenal suppression and is more active against Aspergillus and Sporothrix schenckii. Fluconazole appears to be a highly promising agent due its highly favorable pharmacokinetic profile; it is water soluble, is well tolerated, is not metabolized to inactive constituents, it has a long half-life and, unlike the other azoles, high cerebrospinal fluid levels are readily attained for consideration in meningeal mycoses. It remains to be determined what place these new triazoles have in managing immunosuppressed patients including those with acquired immune deficiency syndrome known as AIDS. Other experimental antifungal agents, including ambruticin, amphotericin B methyl ester and saramycetin are also described. Sales figures are presented of drugs marketed in the United States for the systemic mycoses and reflect the growing problem of fungal diseases in the population.Presented as part of the Everett S. Beneke Symposium in Mycology, May 27, 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号