首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roles of the coupling factor in light-induced proton transportand 515-nm absorption change were investigated in chloroplastswashed with high concentrations of Tris salts (pH 7.2). Washingthe chloroplasts with Tris-HCl and Tris-HNO3 buffers diminishedboth the light-induced pH rise and absorbance change at 515-nm,while Tris-H2SO4 buffer was much less effective. Inhibited activitiescould be restored by replacement of the coupling factor afterextraction with EDTA. N,N'-dicyclohexylcarbodiimide also restoredboth activities. Effects of various anions on the proton pumpand 515-nm shift were also investigated. The order of effectivenesswas NO3>Cl>SO42–. The role of thecoupling factor and its mode of action; the action mechanismsof Tris and anionsn energy transducing processes in chloroplasts,photophosphorylation, proton transport and absorbance changeat 515 nm, are discussed. 1Present address: Biology Department, College of Science andEngineering, Ryukyu University, Naha, Okinawa, Japan. (Received June 27, 1972; )  相似文献   

2.
Intact chloroplasts (about 70% Class I chloroplasts) isolatedfrom spinach leaves incorporated 150 nmoles of [1-14C] acetateinto fatty acids per mg chlorophyll in 1 hr at pH 8.3, 25°Cand 25,000 lux. On electron and phase-contrast microscopiescombined with hypotonic treatment of chloroplasts, this syntheticactivity was shown to be proportional to the percentage of ClassI chloroplasts in the preparation. Light was necessary for thesynthesis, the activity in the complete reaction mixture inthe dark being only 2% of that in the light. The synthetic activityincreased with increasing intensities of light to reach saturationat 6,000 lux. CoA and ATP were most effective as cofactors,HCO3, HPO42–, Mg2$ and Mn2$ were less effective.ATP could be replaced by ADP in the presence of Pi, suggestingpossible supply of ATP by photophosphorylation. Omission ofthe NADPH-generation system and NADH did not affect the synthesis,indicating sufficient provision of endogenous NADPH and NADHin intact chloroplasts under light. Addition of DTE did notcause recovery of the synthetic activity of intact chloroplastsin the dark. 1 Present address: Radioisotope Centre, University of Tokyo,Yayoi, Bunkyo, Tokyo 113, Japan. (Received August 26, 1974; )  相似文献   

3.
The influence of (NH4)2SO4 on 14C assimilation and cyclosisin internodal cells of Chara corallina was investigated. Severeinhibition of 14C assimilation was found at pH values above7·0, this inhibition being correlated with the exogenouslevel of NH3 rather than NH+4. Cyclosis was also affected athigher concentrations of (NH4)2SO4. This effect was similarlycorrelated with exogenous levels of NH3. 14C assimilation was inhibited non-competitively by (NH4)2SO4,the apparent Km being increased from 0·55 to 1·5mM. The results suggest that the site(s) of inhibition is locatedat the plasmalemma, rather than at the chloroplasts. (Evidencein support of in vivo uncoupling of photophosphorylation, bylow concentrations of (NH4)2SO4, was not obtained). Significant perturbation of the OH efflux pattern wasobserved as the level of (NH4)2SO4 was increased. Induced migrationof efflux sites indicates that NH3 may interfere with the cellularmechanism that controls OH transport. Using a cell-segmentisolating chamber it was shown that (NH4)2SO4 inhibited OHefflux rather than HCO3 transport. This inhibitory effectwas readily reversible. These data are discussed in terms of a possible relationshipbetween the observe NH4)2SO4 stimulation of 36Cl influxand the effect of this compound on 14C assimilation.  相似文献   

4.
Intact chloroplasts were isolated from mesophyll and bundlesheath protoplasts of a C4 plant, Panicum miliaceum L., to measurethe uptake of [1-14C]pyruvate into their sorbitol-impermeablespaces at 4?C by the silicone oil filtering centrifugation method.When incubated in the dark, both chloroplasts showed similarslow kinetics of pyruvate uptake, and the equilibrium internalconcentrations were almost equal to the external levels. Whenincubated in the light, only mesophyll chloroplasts showed remarkableenhancement of the uptake, the internal concentration reaching10–30 times of the external level after 5 min incubation.The initial uptake rate of the mesophyll chloroplasts was enhancedabout ten fold by light and was saturated with increasing pyruvateconcentration; Km and Vmax were 0.2–0.4 mM and 20–40µmol(mg Chl)–1 h–1, respectively. The lightenhancement was abolished by DCMU and uncoupling reagents suchas carbonylcyanide-m-chlorophenylhydrazone and nigericin. Theseresults indicate the existence of a light-dependent pyruvatetransport system in the envelope of mesophyll chloroplasts ofP. miliaceum. The uptake activity of mesophyll chloroplastsboth in the light and the dark was inhibited by sulfhydryl reagentssuch as mersalyl and p-chloromercuriphenylsulfonate, but thebundle sheath activity was insensitive to the reagents. Thesefindings are further evidence for the differentiation of mesophylland bundle sheath chloroplasts of a C4 plant with respect tometabolite transport. (Received July 3, 1986; Accepted October 8, 1986)  相似文献   

5.
Tobacco RuDP carboxylase is completely soluble in 0.07 M NaClor 0.01 M Na2SO2, but is almost completely insoluble in salt-freesolutions at 40°C; the solubility seeming to depend on ionicstrength. Lowering the temperature increased solubility of theprotein. The solubility in 0.01–0.04 M NaCl at 0°Cwas more than double that at 40°C. RuDP solubilized theprotein even in a salt-free medium. The protein became insolubleagain on the addition of various divalent cations. Effectivenessof the metal ions was Zn++> Ni++>Co++>Mn++>Mg++>Ca++.Although most of the metal ions inhibited (Mg++ activated) enzymeactivity, no direct correlation was found between the degreeof solubility depression and the degree of enzyme inhibition. (Received October 4, 1971; )  相似文献   

6.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

7.
Washing chloroplasts with a high concentration of Tris-Cl- buffercaused Cl- dependent inhibition of photophosphorylation, light-inducedpH rise and light-triggered Mg2+-dependent ATPase activity.The inhibition of these activities was largely prevented bythe presence of 10–4 M ADP or ATP during Tris washing,especially that of Mg2+-ATPase activity. The results were interpretedas suggesting that the inactivation of light-triggered ATPaseactivity in chloroplasts by chloride is one of the causes ofthe uncoupling of chloroplasts with Tris washing. (Received April 30, 1974; )  相似文献   

8.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m–3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (55–62%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate  相似文献   

9.
Spinach chloroplasts catalyzed ATP formation from acetyl phosphateand ADP when exposed to light. No ATP formation was detectablein the dark. In the absence of ADP, chloroplasts did not hydrolyzeacetyl phosphate in the light or dark. Neither high-energy phosphatessuch as creatine phosphate and phosphoenol pyruvate nor inhibitorsof photophosphorylation competitive with Pi, such as ß-naphthylmonophosphate, phenyl phosphate and pyridoxal 5-phosphate, couldsubstitute for acetyl phosphate as a Pi donor. The apparentKm values for acetyl phosphate and Pi were 0.81 mM and 0.25mM, respectively. The maximal rate of ATP formation with acetylphosphate and Pi were 331 and 521 µmol ATP formed mg chl–1hr–1, respectively. The optimum pH value for acetyl phosphate-dependentATP formation was about 8.0. NH4Cl, dicyclohexylcarbodiimideand triphenyltin chloride inhibited the acetyl phosphate-dependentATP formation. Acid-base transition also could induce subsequentATP formation from acetyl phosphate and ADP. These results suggestthat the acetyl phosphate-dependent ATP formation requires theformation and the utilization of a proton-motive force as ordinaryphotophosphorylation does. 1 This work was supported in part by Grants-in-Aid for ScientificResearch from the Ministry of Education, Science and Culture,Japan to H. S. Part of this work was reported at the 1981 AnnualMeeting of the Japanese Society of Plant Physiologists (Sapporo,May 8, 1981). (Received August 25, 1981; Accepted November 1, 1981)  相似文献   

10.
Acclimation of NO3 transport fluxes (influx, efflux)in roots of oilseed rape (Brassica napus L. cv. Bien venu) andtheir sensitivity to growth at low root temperature was studiedin relation to external NO3 supply, defined by constantconcentrations ranging from sub- to supra-optimal with respectto plant growth rate. Plants were grown from seed in flowingnutrient solutions containing 250 mmol m–3 NO3at 17°C for 20d, and solution temperature in half the cultureunits was then lowered decrementally over 3 d to 7°C. Threedays later plants were supplied with NO3 at 1, 10, 100or 1000 mmol m–3 maintained for 18 d. Dry matter productionwas decreased more by low root zone temperature than low [NO3]e. Root specific growth rates were inversely related to [NO3]eand shoot:root ratios increased with time at [NO3]e between10–1000 mmol m–3. Net uptake of NO3 at 17°Cwas twice that at 7°C, and at both temperatures it doubledwith increasing [NO3]e between 1–10 mmol m–3with further small increases at higher [NO3]e. Mean unitabsorption rates of NO3 between 0–6 d and 6–14d were linearly related (r2 of 0.79–0.99) to log10[NO].Steady-state Q10 (7–17°C) for uptake between 0–6d were 0.91, 1.62, 1.27, and 1.10, respectively, at [NO3]eof 1, 10, 100, and 1000 mmol m–3, compared with correspondingvalues of 0.98, 1.38, 1.68, and 1.89 between 6–14 d. Thedata indicated that net uptake rates at 7 and 17°C divergedover time at high [NO3]e. Short-term uptake rates from1 mol m–3 NO3 measured at 17°C were higherin plants grown with roots at 7°C than at 17°C; for7°C plants there was a strong inverse linear relationship(r2=0.94) between uptake rate and treatment log10 [NO3]ewhilst rates in 17°C plants were independent of prior [NO3]e. Rates of NO3 influx and efflux under different steady-stateconditions of NO3 supply and root temperature were calculatedfrom dilution of 15N added to culture solutions. Efflux wassubstantial relative to net uptake in all treatments, and wasinversely related to [NO3]e at 17°C but not at 7°C.Ratios of influx: efflux ranged from 1.6–2.9 at 17°Cand 1.3–1.8 at 7°C, indicating the proportionatelygreater impact of efflux at low root temperature. Ratios ofefflux: net uptake were 0.53–1.56 at 17°C and 1.21–3.58at 7°C. The apparent sensitivities of influx and effluxto steady-state root temperature varied with [NO3]e.Both fluxes were higher at 17°C than 7°C in the presenceof 100–1000 mmol m–3 NO3 but the trend wasreversed at 1–10 mmol m–3 NO. Concentrations oftotal N measured in xylem exudate were at least 2-fold higherat 7°C compared with 17°C, attributable mainly to higherconcentrations of NO3 glutamine and proline. The resultsare discussed in terms of acclimatory and other responses shownby the NO3 transport system under conditions of limitingNO3 supply and low root temperature. Key words: Brassica napus, nitrate supply, efflux, influx, root temperature, xylem exudate  相似文献   

11.
Mode of photosynthesis in Mesembryanthemum crystallinum changesfrom C3 to Crassulacean acid metabolism (CAM) when the plantswere stressed with high salinity. [14C]Pyruvate uptake for 30s into intact chloroplasts isolated from leaves of the CAM modeof M. crystallinum was enhanced more than 5-fold in the lightcompared with that in the dark. The stromal concentration ofpyruvate in the light reached to more than 2.5 times of themedium. In contrast, little or no pyruvate uptake occurred inchloroplasts from C3 leaves in either light or dark condition.The initial uptake rate (10 s incubation at 4°C) into theCAM chloroplasts in the light was about 3-fold higher than therate in the dark. Km and Vmax of the initial uptake in the lightwere 0.54 mM and 8.5 µmol (mg Chl)–1 h–1 respectively.These suggest that pyruvate was actively incorporated into theCAM chloroplasts against its concentration gradient across theenvelope in the light. When hydroponically grown M. crystallinumwere stressed by 350 mM NaCl, the capacity of chloroplasts forpyruvate uptake was induced in 6 d corresponding to the inductionof the activities of PEP-carboxylase and NAD(P)+-malic enzymesin response to salt stress. (Received October 12, 1995; Accepted January 19, 1996)  相似文献   

12.
Activity of glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate:NADP oxidoreductase, EC 1.1.1.49 [EC] ) preparation from sweet potatoroot tissue was markedly altered in the presence of variousions. Cations or anions were effective in the following order:Na$, K$>Tris$>NH4$>Mg2$>Ca2$, or Cl>NO3,HPO42–>SO42–>HCO3. Activity was inhibitedat high concentrations of Ca2$, and HCO3,. In an investigationon the dependence of the activity on pH, two activity peakswere clearly observed at low ionic strength. Ionic strength altered both the Km and Vmax for glucose 6-phosphate(G6P). A Lineweaver-Burk plot for the enzyme, with respect toG6P, showed a bimodal nature at low ionic strength; suggestingnegative cooperativity. Deviation from linearity of the plotwas less with an increase in the ionic strength. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku, Tokyo 113. (Received September 18, 1971; )  相似文献   

13.
Photosynthetically competent chloroplasts were isolated fromcells of Euglena gracilis Z grown photoautotrophically in 1.5%CO2. The isolated chloroplasts were intact and substantiallyfree from cytosolic, mitochondrial and microbody materials.The effects of some compounds on the activity of photosynthetic14CO2 fixation were examined. The optimal pH and sorbitol concentrationwere 8.0 and 0.33 M, respectively. The chloroplasts requireda high level of P, (5 to 20 mM) for the maximal rate of photosynthesis.They were insusceptible to 10 mM of free Mg2+. ATP, ADP andAMP at 1 to 5 mM notably stimulated photosynthesis, althoughhigh concentrations of AMP were unfavorable. In the assay mediumdeveloped for this study, the chloroplasts exhibited photosyntheticactivity of 120µmoles-mg–1 Chl-h–1 at 30?C. Chloroplasts could also be isolated from cells grown under ordinaryair. The rate of photosynthetic 14CO2 fixation at 1 mM NaHl4CO3was higher in these chloroplasts than in those isolated fromcells grown in 1.5% CO2, whereas at 10 mM NaHl4CO3, the ratesof the two types of chloroplasts were nearly the same. Theseresults suggest that the CO2 concentration given during growthof the algal cells affects the affinity for dissolved inorganiccarbon at the chloroplast level. (Received March 30, 1987; Accepted August 17, 1987)  相似文献   

14.
Tentoxin and, to a lesser extent, dihydrotentoxin (both at 10mmol m–3) reduce stomatal opening in epidermal stripsof Commelina communis in the light but not in darkness. Thiseffect was significantly greater in normal air than in CO2-freeair. Fusicoccin overcame the tentoxin effect. However, tentoxindid not inhibit stomatal opening in the light in epidermal stripsof Paphiopedilum harrisianum, a species which lacks guard cellchloroplasts. It is concluded that tentoxin exerts its actionon stomata not by an ionophorous effect in the plasmalemma ofguard cells but by the inhibition of photophosphorylation intheir chloroplasts. The effects of DCMU and tentoxin on guardcells are discussed in terms of their effects on chloroplastsand the extent to which energy is supplied from this organelleduring stomatal opening in the light. The results indicate thatneither photophosphorylation nor non-cyclic electron transportin guard cell chloroplasts are essential for stomatal opening. Key words: Commelina, epidermal strips, Paphiopedilum, photophosphorylation, stomata, tentoxin  相似文献   

15.
The influence of two DNA gyrase inhibitors, nalidixic acid andnovobiocin, on DNA synthesis in isolated pea chloroplasts wasexamined. Novobiocin at 1–5 mol m–3 markedly lowered[3H]thymidine incorporation into DNA (30–95% inhibition);while less effective, nalidixic acid at similar concentrationsalso diminished incorporation (25–35% inhibition). Theinhibition of chloroplast DNA (ctDNA) biosynthesis by nalidixicacid and novobiocin was confirmed by autoradiography and densitometry.These data are consistent with the view that chloroplasts containa DNA gyrase-like enzyme which is necessary for DNA replication.Despite this, interpretation of the results is not straightforward,as both nalidixic acid and novobiocin also inhibited photosyntheticactivity. Each substance (at millimolar levels) reduced ferricyanide-dependentO2 evolution in isolated chloroplasts. However, at lower concentrations(0.05–0.3 mol m–3) they slightly enhanced photosyntheticelectron flow; thus, these compounds may act as uncouplers ofphotophosphorylation as well as inhibitors of electron transport.Nalidixic acid and novobiocin at relatively low (0.1 mol m–3)concentrations also strongly reduced CO2-dependent O2 evolution(an index of CO2 photo-assimilation) in isolated plastids. Thus,caution must be exercised in assessing results from studiesin which nalidixic acid and novobiocin are used with whole plants,cells, protoplasts or isolated chloroplasts. Key words: Chloroplast, DNA replication, novobiocin, nalidixic acid, DNA gyrase  相似文献   

16.
Dark uptake of inorganic 14C by offshore plankton was measuredat two depths at 36 stations in the Atlantic Ocean from 52°Sto 26°N, mainly along 30°W. The samples were incubatedfor 2 h with and without inhibition of biological activity withHgCl2. In addition, six time course experiments were performed.The mean dark uptake rate varied from 0.68 to 4.82 (µmolC m–3 h–1 over the transect and showed a significantpositive relationship with chlorophyll a. The dark uptake wasusually >5% of the maximum photosynthetic capacity (Pm),and higher values relative to Pm were associated with low valuesof Pm and not with high absolute dark values. A linear relationshipbetween dark uptake and Pm was found with a background value(y-axis intercept) of 0.51 (µmol C m–3 h–1and a slope of 0.77% of Pm. A major fraction of the dark signal,66–80% of the total signal, persisted in bottles treatedwith HgCl2, indicating that most of the dark signal was independentof biological activity. Time course experiments showed a lineardark uptake with time for the first hours, whereafter the uptakeceased. At stations with low concentrations of inorganic nitrogen[>1 (µmol (NH4++NO3)], a second stage was observedafter 3–8 h, probably due to an increase in bacterialactivity. The results suggest three mechanisms for the darkvalue in short-term incubations in oligotrophic waters. A backgroundvalue independent of biomass and incubation time which was thedominant part of the dark signal in samples with very low phytoplanktonbiomass (>0.3 p-g Chi a 1"). Another important part was residualsof 14C associated with plankton, probably adsorbed to compoundsinside the cells. This fraction was dominant in short-term incubationsat chlorophyll concentrations >0.3 p.g Chi a H. Active uptakeby living cells (total minus ‘HgCl2 uptake‘) wasonly a minor part of the dark signal in short-term incubations,but dominated at longer incubation time (>3–9 h), probablydriven by an increase in bacterial activity. A significant enhancementof the non-photosynthetic uptake of 14C was observed in light,probably associated with a carbon-concentrating mechanism inphytoplankton or light stimulation of ß-carboxylationactivity. The results strongly suggest that dark values shouldbe subtracted from the light uptake. This correction is particularlyimportant when photosynthetic rates are low, e.g. at low lightor in short-term incubations where a time-zero background becomesa significant part of the total uptake in light. Present address: National Environmental Research Institute,Department of Marine Ecology and Microbiology, Frederiksborgvej399, PO Box 358, DK-4000 Roskilde, Denmark  相似文献   

17.
Rate of Uptake of Potassium by Three Crop Species in Relation to Growth   总被引:4,自引:0,他引:4  
Barley, ryegrass, and fodder radish were grown in flowing nutrientsolutions at four potassium concentrations, [Ke+], from 0.05to 4 mg I–1. During the first 2 weeks after germinationthe response to [Ke+] (fodder radish > barley > ryegrass)depended on the potential relative growth rate, the ratio ofroot surface area to plant weight, and on the K+ flux into theroots. Subsequently, there was no effect of [Ke+] on growthrate within the range tested. The K+ flux decreased from 4–23? 10–12 mol cm–2 s–1 in the first 2 weeksafter germination, when it was concentration-dependent, to 2–5? 10–12 mol cm–2 s–1 after 4–5 weeks,when it became independent of [Ke+] down to 0.05 mg 1–1.The results explain the importance of high [Ke+] and rapid rootgrowth during the first 2 weeks after seed germination.  相似文献   

18.
Light-induced changes in membrane potential in Spirogyra   总被引:2,自引:0,他引:2  
Spirogyra cells exhibited changes in membrane potential whenthey were exposed to light. Cells made chloroplast-free didnot show any light-induced potential change (LPC) upon illuminationwith white light and also monochromatic red (680 nm) and farred (720 nm) light. LPC was observed when the cell containedonly a small fragment of chloroplast, whether the cell had anucleus or not. The magnitude of LPC depended on the amountof chloroplast in the cell. DCMU at 10–5 M, CCCP at 10–5 M and DNP at 10–4M at pH 5.5 suppressed LPC, while CCCP at 1–5 ? 10–6M, NH4Cl at 5 ? 10–2 M and DNP at 10–4 M at pH 7.0stimulated LPC. PMS at 10–4 M stimulated LPC and couldinduce LPC which was completely inhibited by DCMU. These factssuggest that LPC is related to noncyclic and cyclic electronflows. The influences of light and dark conditions and various metabolicinhibitors (DCMU, DNP, CCCP, NH4Cl) on ATP level have been investigated.No significant difference in the ATP level was observed betweencells in the light and dark. DNP at 10–4 M (pH 5.5) andCCCP at 5 ? 10–6 M decreased the ATP level significantly,while DCMU and NH4Cl only slightly. Good correlation was notfound between the total ATP level and LPC in Spirogyra. LPC occurred even when the external medium contained only asingle salt such as KCl, NaCl or CaSO4. LPC was also recorded in chloroplasts in situ and in vitro.The mode of LPC of chloroplasts was quite different from thatof the cell. On illumination, the chloroplast potential changedvery rapidly and transiently in the positive direction thenrecovered spontaneously to almost the original potential level. Possible causes of LPC are discussed in relation to the electrogenicion pump. 1 Present address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Bunkyo, Tokyo 113, Japan. (Received November 9, 1977; )  相似文献   

19.
The Carbon Economy of Rubus chamaemorus L. II. Respiration   总被引:1,自引:0,他引:1  
MARKS  T. C. 《Annals of botany》1978,42(1):181-190
Respiratory activity and seasonal changes in carbohydrate contentof the storage organs of Rubus chamaemorus L. have been investigated.Leaf dark respiration rate increases in a non-linear mannerfrom 0·7 mg CO2 evolved dm–2 h–1 at 0 °Cto 4·6 rng CO2 evolved dm–2 hh–1 at 30 °C.Root and rhizome respiration rates increase from 1 µ1O2 uptake g–1 fresh weight h–1 at 0.7 ° C to10 µ10, uptake g–1 f. wt h–1 at 20 °C.Rhizome carbohydrate reserves decline from a September peakof 33 per cent alcohol insoluble d. wt to 16 per cent in May. The circumpolar distribution of R. chamaemorus is discussedin relation to the evidence presented here and in the precedingpaper of the series.  相似文献   

20.
Temperature Effects on Rice at Elevated CO2 Concentration   总被引:1,自引:0,他引:1  
The continuing increase in atmospheric carbon dioxide concentration([CO2]) and projections of possible future increases in globalairtemperatures have stimulated interest in the effects of theseclimate variables on agriculturally important food crops. Thisstudywas conducted to determine the effects of [CO2] and temperatureon rice (Oryza sativa L., cv. IR–30). Rice plants weregrownseason-long in outdoor, naturally sunlit, controlled-environment,plant growth chambers in temperature regimes ranging from 25/18/21°Cto 37/30/34°C (daytime dry bulb air temperature/night-timedry bulb air temperature/paddy water temperature)and [CO2] of660 µmol CO2 mol1 air. An ambient chamber was maintainedat a [CO2] of 330 µmol mol–1 and temperature regimesof 28/21/25°C. Carbon dioxide enrichment at 28/21/25°Cincreased both biomass accumulation and tillering and increasedgrain yield by 60%. In the 660 µmol mol–1 [CO2]treatment, grain yield decreased from 10.4 to 1.0 Mg ha–1with increasing temperature from 28/21/25°C to the 37/30/34°Ctemperature treatment. Across this temperature range, the numberof panicles plant–1 nearly doubled while the number ofseeds panicle–1 declined sharply. These results indicatethat while future increases in atmospheric [CO2] are likelyto be beneficial to rice growth and yield, potentially largenegative effects on rice yield are possible if air temperaturesalso rise. Key words: Oryza sativa, CO2, temperature, growth, yield  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号