首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two groups of proteins were isolated from the retina and pigment epithelium of eight-day-old chick embryos. Experiments with suspension cultures of retinal cells demonstrated that only the retinal extracts and the fraction of its acidic proteins can stimulate cell aggregation in vitro. Analysis by the method of high-performance liquid chromatography showed that fractions of acidic and basic retinal proteins, which markedly differ in their electric charge and biological activity, have similar composition. To study the effect of these proteins on the morphological and functional state of pigment epitheliumin vitro, a new experimental model is proposed, with the posterior segment of the newt (Pleurodeles waltl) eye used as a test tissue. The fraction of basic proteins isolated from the chick embryonic pigment epithelium stabilized cell differentiation in the newt pigment epithelium. The analyzed proteins proved to be biologically active at extremely low doses, corresponding to 10−12 M solutions.  相似文献   

2.
Two groups of proteins were isolated from the retina and pigment epithelium of eight-day-old chick embryos. Experiments with suspension cultures of retinal cells demonstrated that only the retinal extracts and the fraction of its acidic proteins can stimulate cell aggregation in vitro. Analysis by the method of high-performance liquid chromatography showed that fractions of acidic and basic retinal proteins, which markedly differ in their electric charge and biological activity, have similar composition. To study the effect of these proteins on the morphological and functional state of pigment epithelium in vitro, a new experimental model is proposed, with the posterior segment of the newt (Pleurodeles waltl) eye used as a test tissue. The fraction of basic proteins isolated from the chick embryonic pigment epithelium stabilized cell differentiation in the newt pigment epithelium. The analyzed proteins proved to be biologically active at extremely low doses, corresponding to 10(-12) M solutions.  相似文献   

3.
In our work the new proteins likely belonged to the microenvironment of pigmented epithelium cells and retinal neurons in mammalian eye were studied. We attempted to understand the role of these proteins in the maintenance of normal morphological and functional state of these eye tissues. Earlier for the first time we identified the adhesion molecules with physico-chemical and biological properties much different from other known cell adhesion molecules of bovine eye. Probably, they represent one family of low molecular weigh, highly glicosylated proteins, that express biological activity in extremely low doses--10(-10) mg/ml. The homogeneity of studying proteins is confirmed by HPLC and SDS-electrophoresis in PAAG. It is shown also that these proteins are N-glycosylated, because they contain mannose and N-acetilglucosamine residues. They demonstrate as well a high calcium-binding activity, with Kd corresponded to 10(-4)-10(-6) mg/ml. For a study of the biological effect of these glycoproteins in extremely low doses, a new experimental model was proposed and developed. It was the cultivation in vitro of the posterior part of the eye obtained from the newt Pleurodeles waltl. In short-time culture system it was demonstrated that the studied glycoproteins could stabilize pigment epithelium cell differentiation and cellular interactions in the neural retina in vitro. In addition, glycoproteins, obtained from the pigmented epithelium of bovine eye could decrease the rate of bipolar cell apoptosis in the neural retina. Therefore, the novel adhesion glycoproteins, expressing their biological activity in extremely low doses, pretend to be the regulatory molecules with vivid gomeostatic effects necessary for the delicate adjustment of cell behavior action and function in sensory tissues.  相似文献   

4.
Cellular composition of the peripheral region of the eye in amphibians and mammals as well as embryonic fissure in amphibians was studied. Different distributions of proliferating cells in retinal pigment epithelium have been revealed in adult amphibians (newt, axolotl, and Xenopus). Single cells incorporated [3H]thymidine in the newt and Xenopus; 0.4% cells, in the axolotl. An embryonic fissure was observed in the eye of the axolotl. Pigment epithelial cells in the embryonic palpebral region actively proliferated: about 20% cells incorporated [3H]thymidine. Proliferating cells were also localized in the ciliary marginal zone of the retina in all studied amphibians, particularly, in the axolotl. In newborn hamsters, [3H]thymidine-labeled cells have been revealed in the pigment epithelium as well as in the outer pigmented and inner unpigmented layers of the ciliary body. Proliferative activity of the peripheral regions of the eye is due to eye growth in adult amphibians and newborn hamsters. After retinectomy, the retina is regenerated from the cells of the growth ciliary marginal zone in all amphibians, pigment epithelial cells in the newt, and pigment epithelial cells of the embryonic fissure in the axolotl. Heterogeneous composition of the pigment epithelium in the newt and axolotl reflects high transdifferentiation potential of these regions. Structural comparison of the peripheral region of the eye in amphibians and mammals demonstrate that the ciliary body of mammals containing stem cells is homologous to the ciliary marginal zone of amphibians containing multipotent cells.  相似文献   

5.
A study was made of proliferative activity and transdifferentiation of the cells of retinal pigment epithelium (RPE) cultivated in the cavity of the lensectomized eye of adult newt. Implantation of the newt RPE together with vascular membrane and scleral coat resulted in the regeneration of retina. In this process the character of changes in the proliferative activity of RPE and differentiation of retinal cells were the same as in the regeneration of retina in situ. RPE implanted with the vascular membrane alone, despite a high level of proliferation during the first ten days of cultivation, no differentiated retina was formed. Possible causes of these differences are discussed, and the comparison is made of the data obtained with those on RPE cultivation in vitro. After lens removal, with RPE implants present in the eye cavity, in addition to the regenerated lens, 2-3 extra lenses and retina were formed from the cells of the inner layer of the recipient's dorsal iris. Also some cases were revealed of lens formation from the cells of ventral iris. With a complete detachment of the recipient's retina (an after-effect of transplantation) a second differentiated retina regenerated in situ from the recipient's RPE cells.  相似文献   

6.
Summary Myeloid bodies are believed to be differentiated areas of smooth endoplasmic reticulum membranes, and they are found within the retinal pigment epithelium in a number of lower vertebrates. Previous studies demonstrated a correlation between phagocytosis of outer segment disc membranes and myeloid body numbers in the retinal pigment epithelium of the newt. To test the hypothesis that myeloid bodies are directly involved in outer segment lipid metabolism and to further characterize the origin and functional significance of these organelles, we examined the effects on myeloid bodies of eliminating the source of outer segment membrane lipids (neural retina removal) and of the subsequent return of outer segments (retinal regeneration) in the newt Notophthalmus viridescens. Light- and electron-microscopic analysis demonstrated that myeloid bodies disappeared from the pigment epithelium within six days of neural retina removal. By week 6 of regeneration, rudimentary photoreceptor outer segments were present but myeloid bodies were still absent. However, at this time, the smooth endoplasmic reticulum in some areas of the retinal pigment epithelial cells had become flattened, giving rise to small (0.5 m long), two-to-four layer-thick lamellar units, which are myeloid body precursors. Small myeloid bodies were first observed one week later at week 7 of retinal regeneration. This study revealed that newt myeloid bodies are specialized areas of smooth endoplasmic reticulum. It also showed that a contact between functional photoreceptors and the retinal pigment epithelium is essential to the presence of myeloid bodies in the epithelial cells.  相似文献   

7.
Transdifferentiation from retinal pigment epithelium (RPE) to neural retina (NR) was studied under a new culture system as an experimental model for newt retinal regeneration. Adult newt RPEs were organ cultured with surrounding connective tissues, such as the choroid and sclera, on a filter membrane. Around day 7 in vitro, lightly pigmented “neuron‐like cells” with neuritic processes were found migrating out from the explant onto the filter membrane. Their number gradually increased day by day. BrdU‐labeling study showed that RPE cells initiated to proliferate under the culture condition on day 4 in vitro, temporally correlating to the time course of retinal regeneration in vivo. Histological observations of cultured explants showed that proliferating RPE cells did not form the stratified structure typically observed in the NR but they rather migrated out from the explants. Neuronal differentiation was examined by immunohistochemical detection of various neuron‐specific proteins; HPC‐1 (syntaxin), GABA, serotonin, rhodopsin, and acetylated tubulin. Immunoreactive cells for these proteins always possessed fine and long neurite‐like processes. Numerous lightly pigmented cells with neuron‐like morphology showed HPC‐1 immunoreactivity. Fibroblast growth factor‐2 (FGF‐2), known as a potent factor for the transdifferentiation of ocular tissues in various vertebrates, substantially increased the numbers of both neuron‐like cells and HPC‐1‐like immunoreactive cells in a dose‐dependent manner. These results indicate that our culture method ensures neural differentiation of newt RPE cells in vitro and provides, for the first time, a suitable in vitro experimental model system for studying tissue‐intrinsic factors responsible for newt retinal regeneration. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 209–220, 2002; DOI 10.1002/neu.10031  相似文献   

8.
To understand why the retinal pigment epithelium (RPE) has different potentials for neural differentiation in lower and higher vertebrates, the RPEs of adult newts and rats were compared under similar in vitro cultivation conditions. The RPEs of both animal species were organotypically cultivated within the posterior eye wall under constant rotation in the serum medium free of growth factors. Comparison of the cell morphology, proliferation, and expression of pan-neural markers demonstrated that the RPE cells of adult newts and rats under similar in vitro conditions displayed both similarities and differemces. They were able to synthesize DNA but rarely divided mitotically. In addition, part of the RPE cells of both the newt and the rat were dislodged from the layer, migrated, and acquired a macrophage phenotype. However, the majority of the cells retained the initial morphology and remained within the layer. In several cases, these cells displayed the initial characteristics of neural differentiation, namely, expression of pan-neural proteins. The difference between the newt and rat RPE cells was in the ability of the former to generate in vitro an additional row of dedifferentiated NF-200-positive cells, characteristic of in vivo newt retinal regeneration. These data demonstrate that the RPE cells of the adult newt and rat retain the potential of manifesting neural cell traits; however, more advanced changes towards differentiation are characteristic of only the newt RPE.  相似文献   

9.
The mechanisms of adhesion of the retinal and pigment epithelium cells, as well of cell interaction within each of these tissues were studied during development. It was shown by means of separation of retina from pigment epithelium in different dissociation media that the adhesion of these tissues in 5-6 day old chick embryos is realized via a Ca2+-independent mechanism. The adhesion of these tissues decreases between days 7 and 16. Starting from day 16, both Ca2+-independent and Ca2+-dependent mechanisms are involved in the interaction of the retinal and pigment epithelium cells. By measuring the output of single cells into the suspension after the treatment of retina and pigment epithelium with different dissociating agents, it was shown that from the 5th day of incubation on the adhesion of pigment epithelium cells is mediated by Ca2+-dependent mechanism. In the retina three types of cells were found: interacting via Ca2+-dependent mechanism only, Ca2+-independent mechanism only, and both the mechanisms. In the course of differentiation, the numbers of the population of cells interacting only via Ca2+-dependent mechanism increase, while those of cells interacting via Ca2+-independent mechanism decrease. It is suggested that at each developmental stage those retinal cell possess Ca2+-dependent mechanism of adhesion which are closest to the definitive state.  相似文献   

10.
Peroxidase activity, assayed with 2 mM-H2O2 and suitable hydrogen donors (either p-phenyl-enediamine or diaminobenzidine), was demonstrated in homogenates of neural retina and pigment epithelium of both the dog and the cow. The enzyme is particle-associated in the native state, but is readily extractable by brief sonication or freeze-thawing. At optimum pH, which is between 4.0 and 4.5 for both sources, the specific activity is up to 40 times greater in pigment epithelial cells than in neural retina. Some catalase activity was detected in extracts from both bovine and canine neural retina, but catalase was essentially absent in pigment epithelium. Fractionation of bovine pigment epithelial cells showed that peroxidase activity is associated mainly with heavy organelles sedimenting at low centrifugal forces. Melanosomes, nuclei, melanolysosomes and plasma membranes were the principal organelles identified in these low speed sediments. It was not possible to separate them either by differential centrifugation or on discontinuous sucrose gradients. However, melanosomes were excluded as the only source of peroxidase activity by isolating separately the melanotic and amelanotic cell populations; equal peroxidase was found in both cell types. Since nuclei are not a likely source of this enzyme, it is suggested that most of the peroxidase activity in bovine pigment epithelial cells is localized in either the melanolysosomes, plasma membranes, or both.  相似文献   

11.
Adult rat and newt retinas were studied during long organotypic 3D cultivation. A high proliferation level was discovered in the region of growth by applying DNA synthesis markers and in vitro mitosis registration in newt retina. Aggregates were formed in the retina spheroid cavity because dedifferentiated cells migrated into this region. Small cell populations in nuclear layers also had dividing and migration capacity. Rosette formation has been shown in newt retina. It is a characteristic of fetal retinal development under pathological conditions. The antiGFAP antibody dye demonstrated an increase in the parent Müller cell population and generation of a small cell pool with short GFAP-extensions de novo. Recoverin expression studies detected its translocation from photoreceptor extensions to the cell bodies. Moreover, protein was presented in some cells inside the spheroid. It has been shown for the first time that cell proliferation occurred in the adult rat retinal spheroid developing in vitro; BrdU-positive cells and multiple mitoses were revealed in this fissue. However, the source of proliferation was not in the peripheral retina, and resident macrophages and glial cells located among neurons of the inner nuclear layer had the ability to divide. The antiGFAP antibody showed an increase in GFAP fibers in the rat retina as well as in the newt retina. Recoverin translocated into photoreceptor perikaryons and the outer plexiform layer in cultivated rat retina. Interestingly, some cells with probably de novo expression of recoverin were discovered in rat and newt inner retinas.  相似文献   

12.
The quantity of porphyrin synthesized in the presence of 10(-3) M delta-aminolevulinic acid (ALA) is several times higher in the bovine pigment epithelium than in the retina. Synthesis in the retina was found to be increased by illumination, whereas synthesis in the pigment epithelium was decreased if the whole anatomical unit (retina-pigment epithelium-choroid) was cultivated together. The quantity of porphyrin synthesized in the presence of 10(-3) M ALA or 10(-6) M melatonin was different when the pigment epithelium and retina were separated. The combination 10(-3) M ALA with 10(-6) M melatonin inhibited retinal porphyrin synthesis after green light adaptation, while in the pigment epithelium green light adaptation induced porphyrin synthesis. It is postulated that the light-sensitive porphyrin-haeme synthesis of the retina-pigment epithelium-choroid functional unit may serve and modulate the synthesis of guanylate cyclase for cGMP.  相似文献   

13.
Tyrosinase is the key enzyme in melanin synthesis, and is expressed in the pigment epithelium of the retina, a cell layer derived from the optic cup; and in neural crest-derived melanocytes of skin, hair follicle, choroid, and iris. The tyrosinase gene has been cloned and shown to map to the well-characterized c-locus (albino locus) of the mouse. Subsequent studies demonstrated that a functional tyrosinase minigene was able to rescue the albino phenotype in transgenic mice. The transgene was expressed in a cell type-specific manner in skin and eye. During development of the mouse, the tyrosinase gene is expressed in the pigment epithelium of the retina as early as day 10.5 of gestation. In the hair follicle, tyrosinase gene expression is detected from day 16.5 onwards. This cell-type–specific expression is largely reproduced in transgenic mice. Our results suggest that sequences in the immediate vicinity of the mouse tyrosinase gene are sufficient to provide cell type-specificity and developmental regulation in melanocytes and the pigment epithelium.  相似文献   

14.
The FGF2 signaling pathway components in tissues of the posterior wall in the normal and regenerating eye of the adult Pleurodeles waltl newt were detected for the first time. The fgf2 gene expression was found in the retina, retinal pigment epithelium, and choroid using polymerase chain reaction (PCR). A high homology of the mRNA nucleotide sequence of the most conservative fgf2 gene region in the P. waltl with the fgf2 orthologs in other vertebrates was proved. The Fgf2 protein amino acid sequence of the P. waltl newt demonstrates even more homology with this growth factor in other vertebrates. The Fgf2 protein with a molecular weight 35 kDa was found in the studied eye tissues using Western blot hybridization. Localization of the Fgf2 protein and its Fgfr receptors was immunohistochemically studied in the pigment epithelium, choroid, central and growth retina regions of the newt native eye, and in the connective cilium of photoreceptors. Using real-time PCR and immunohistochemistry methods, it was found that the fgf2 gene down-regulation and a decrease in the intensity of the immunochemical reaction of its protein product (Fgf2) occur in the early period after the retina removal (in 4–8 days) (as compared with those in the same department of the unoperated eye).  相似文献   

15.
We analysed the expression of members of the hh gene family in adult ocular tissues of newt, frog and mouse by RT-PCR method. Shh displayed restricted expression in the neural retina that was conserved in each species analyzed. X-bhh, X-chh and mouse Ihh were detected in the iris and in the retinal pigment epithelium, while mouse Dhh was detected additionally in the neural retina and faintly in the cornea. We also found that two types of ptc genes, potential hh targets and receptors, were expressed in these tissues, suggesting the presence of active hh signalling there.  相似文献   

16.
Transdifferentiation from retinal pigment epithelium (RPE) to neural retina (NR) was studied under a new culture system as an experimental model for newt retinal regeneration. Adult newt RPEs were organ cultured with surrounding connective tissues, such as the choroid and sclera, on a filter membrane. Around day 7 in vitro, lightly pigmented "neuron-like cells" with neuritic processes were found migrating out from the explant onto the filter membrane. Their number gradually increased day by day. BrdU-labeling study showed that RPE cells initiated to proliferate under the culture condition on day 4 in vitro, temporally correlating to the time course of retinal regeneration in vivo. Histological observations of cultured explants showed that proliferating RPE cells did not form the stratified structure typically observed in the NR but they rather migrated out from the explants. Neuronal differentiation was examined by immunohistochemical detection of various neuron-specific proteins; HPC-1 (syntaxin), GABA, serotonin, rhodopsin, and acetylated tubulin. Immunoreactive cells for these proteins always possessed fine and long neurite-like processes. Numerous lightly pigmented cells with neuron-like morphology showed HPC-1 immunoreactivity. Fibroblast growth factor-2 (FGF-2), known as a potent factor for the transdifferentiation of ocular tissues in various vertebrates, substantially increased the numbers of both neuron-like cells and HPC-1-like immunoreactive cells in a dose-dependent manner. These results indicate that our culture method ensures neural differentiation of newt RPE cells in vitro and provides, for the first time, a suitable in vitro experimental model system for studying tissue-intrinsic factors responsible for newt retinal regeneration.  相似文献   

17.
V I Mitashov 《Ontogenez》1978,9(2):183-188
It was concluded that the newly synthesized melanin granules were replaced in the pigmented tissues of the newt eye on the basis of redistribution of the cells of pigment epithelium of retina and iris labelled by 3H-DOPA 2.5 and 6.5 months after the isotope injection. The replacement of melanin granules and, correspondingly, melanin synthesis proceed more actively in the peripheral zones of the pigment epithelium of retina. The depigmentation of cells preceding the melanin synthesis appears to be realized with the participation of macrophages.  相似文献   

18.
19.
Patterning of the vertebrate eye appears to be controlled by the mutual regulation and the progressive restriction of the expression domains of a number of genes initially co-expressed within the eye anlage. Previous data suggest that both Otx1 and Otx2 might contribute to the establishment of the different eye territories. Here, we have analysed the ocular phenotype of mice carrying different functional copies of Otx1 and Otx2 and we show that these genes are required in a dose-dependent manner for the normal development of the eye. Thus, all Otx1(-/-); Otx2(+/-) and 30% of Otx1(+/-); Otx2(+/-) genotypes presented consistent and profound ocular malformation, including lens, pigment epithelium, neural retina and optic stalk defects. During embryonic development, optic vesicle infolding was severely altered and the expression of pigment epithelium-specific genes, such as Mitf or tyrosinase, was lost. Lack of pigment epithelium specification was associated with an expansion of the prospective neural retina and optic stalk territories, as determined by the expression of Pax6, Six3 and Pax2. Later in development the presumptive pigment epithelium region acquired features of mature neural retina, including the generation of Islet1-positive neurones. Furthermore, in Otx1(-/-); Otx2(+/-) mice neural retina cell proliferation, cell differentiation and apoptotic cell death were also severely affected. Based on these findings we propose a model in which Otx gene products are required for the determination and differentiation of the pigment epithelium, co-operating with other eye patterning genes in the determination of the specialised tissues that will constitute the mature vertebrate eye.  相似文献   

20.
This work continues the studies of the proliferative ability of cells in the adult newt retina. The model of experimental detachment of the retina from pigment epithelium and two techniques to saturate the ocular tissues in vivo with precursors of DNA synthesis were used: (1) the method of repeated [3H]-thymidine labeling and subsequent autoradiographic analysis of semithin sections and (2) an original method for continuous labeling of thymidine analog bromodeoxyuridine and subsequent immunochemical detection. The data obtained confirm and extend our previous data on the localization of DNA-synthesizing cells in the neural retina and expose the pattern of S-phase cell accumulation after retinal detachment for each proliferation-competent cell population. In addition to cells in the growth zone of the retina, Muller glia, microglia, and minor cell population in the vitreal part of interneurons, DNA-synthesizing cells included astrocytes of the optic nerve and cells of its vascular network. Four weeks after detachment, the number of S-phase cells in the growth zone could reach 15-20%, while the above-mentioned DNA-synthesizing cells in the differentiated retina have low reproductive rate and could produce only one generation within the same period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号