首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported that purified human C-reactive protein (CRP) specifically binds to the cell-binding region of plasma fibronectin (Fn) in a Ca2+-dependent reaction that is saturable at a molar ratio of CRP/Fn of approximately 9. In this study, the binding of CRP to Fn was found to interfere with the cell-attachment promoting activity of Fn. The inhibition of cell attachment was dependent on the concentration of the CRP and involved the phosphorylcholine (PC) binding site of CRP since inhibition was prevented by allowing the CRP to react with either PC (or closely related monophosphate compounds) or a mAb specific for the PC-binding site of CRP. Binding of CRP to laminin was also Ca2+-dependent; however, this binding did not alter the cell-attachment promoting activity of laminin. CRP by itself does not mediate cell attachment. Since CRP is selectively deposited at sites of tissue damage along with plasma Fn and has the ability to bind to Fn and alter its cell-binding activity, CRP may modulate early events in tissue repair.  相似文献   

2.
C-reactive protein (CRP) binds with high affinity to fibronectin (Fn), a major component of the extracellular matrix (ECM), but at physiological pH the binding is inhibited by calcium ions (Ca2+). Because CRP circulates in the blood in Ca2+ -bound form, the occurrence of CRP-Fn interactions in vivo has been doubtful. To define the basis of inhibition of CRP-Fn interaction by Ca2+ at pH 7.0, we hypothesized that Fn-binding site on CRP consisted of amino acids co-ordinating Ca2+. Site-directed mutagenesis of amino acids co-ordinating Ca2+ drastically decreased the binding of CRP to Fn, indicating that the Ca2+ -binding site indeed formed the Fn-binding site. To determine the requirements for possible interaction between Ca2+ -bound CRP and Fn, we investigated inhibition of CRP-Fn interaction by Ca2+ as a function of pH. Ca2+ did not inhibit binding of CRP to Fn at pH 6.5 and lower. The contrasting Fn binding properties of CRP at physiological and mildly acidic pH indicated that the interaction of Ca2+ -bound CRP with Fn was controlled by pH. We conclude that the inhibition of binding of CRP to Fn by Ca2+ at pH 7.0 is a mechanism to prevent CRP-Fn interactions under normal conditions. CRP, in its Ca2+ -bound state, is capable of binding Fn but only at the inflammatory sites and tumors with low pH. CRP, Fn, and the ECM all have been implicated in cancer. Taken together our data raise the possibility that CRP-Fn interactions may change the architecture of ECM to modify the development of tumors.  相似文献   

3.
The role of Ca2+ binding in the self-aggregation of laminin-nidogen complexes   总被引:11,自引:0,他引:11  
Laminin-nidogen complexes were found to aggregate in the presence of divalent cations in a manner dependent on ion concentration. This effect shows a selectivity for Ca2+, as half-maximal aggregation is achieved already at about 10 microM Ca2+, while Mg2+ induces aggregation at 10-fold higher ion concentrations and always to a lesser extent. When binding of Ca2+ to laminin-nidogen complexes was measured by equilibrium dialysis, a total of about 16 binding sites with dissociation constants in the range of 5-300 microM could be identified. At 50 microM Ca2+, where the aggregation is maximal, only two to three Ca2+ ions are bound to laminin-nidogen complexes, indicating that the aggregation reaction is induced by the binding of Ca2+ to a small number of sites and possibly to a single distinct site. Analysis of Ca2+ binding to various proteolytic fragments of laminin allowed the tentative localization of a high affinity binding site to a large fragment comprising two of the short arms connected by the central part of the laminin molecule.  相似文献   

4.
C-reactive protein (CRP) has been reported to deposit only to inflammatory sites, but not to normal sites. In present paper, we investigated involvements of fibronectin and lysophosphatidylcholine (lyso-PC) as responsible for this selectivity. In ELISA assay, CRP was found to bind to immobilized fibronectin with dose dependency, only in the presence of Ca2+ ions. Addition of 5 mM EDTA allowed CRP to abolish this binding. However, it could not be inhibited neither by phosphorylcholine nor by heparin. On the other hand, CRP could aggregate liposome consisted of lyso-PC and phosphatidylcholine (PC), but not that consisted of PC alone. Aggregation was found to be maximum when liposome with lyso-PC/PC molar ratio of 0.3 was used. Similar result was also observed in binding study with peroxidase-labelled CRP. In addition, phospholipase A2 treatment of liposome consisted of PC alone induced 3-fold higher binding than that found with untreated one. Ca2+ ions were required for binding to liposome.  相似文献   

5.
Gd3+ was evaluated as a probe for Ca2+ sites on protein kinase C (PKC) by studying its ability to replace Ca2+ in activation of PKC isozymes II (beta) and III (alpha) in the lipid systems phosphatidylserine/1,2-dioleoyl-sn-glycerol (PS/DO) and diheptanoylphosphatidylcholine (PC7)/DO. PKC beta was stimulated by Ca2+ or Gd3+ in PS/DO whereas activity in PC7/DO was independent of these metals. Thus, it is suggested that Gd3+ replaces Ca2+ at a site involving metal-lipid interactions. High concentrations of Ca2+ or Gd3+ inhibited activity in both lipid systems. Analysis of the Gd3+ inhibition in the PC7/DO system suggests that it is due to formation of GdATP, which competes at the MgATP site. Activity of PKC alpha was dependent on low concentrations of Ca2+ in both lipid systems. The ability of Gd3+ to substitute for Ca2+ could not be evaluated in the PS system due to the inability to completely remove contaminating Ca2+ without chelating buffers. Successful reduction of contaminating Ca2+ was achieved in the PC7 system but Gd3+ failed to substitute for Ca2+ in activating PKC alpha and only caused inhibition. This is consistent with binding of Gd3+ to a Ca2+ site at or near the active site of the enzyme rather than to a site on the lipid. These results indicate that interactions between PKC and Gd3+ are complex, involving occupation of more than one class of sites. Conditions for separately evaluating the individual sites can be manipulated by selection of isozyme and lipid system.  相似文献   

6.
Interaction of calcium with bovine plasma protein C   总被引:2,自引:0,他引:2  
The binding of 45Ca2+ to bovine plasma protein C (PC) and to activated bovine plasma protein C (APC) has been examined by equilibrium ultrafiltration at pH 7.4 and 25 degrees C. Under these conditions, PC possesses 16.0 plus or minus 2.0 equivalent Ca2+ binding sites, of average KD (8.7 plus or minus 1.5) x 10(-4) M, and APC contains 9.0 plus or minus 1.0 equivalent Ca2+ binding sites, with an average KD of (4.3 plus or minus 1.1) x 10(-4) M. Both Mn2+ and Sr2+ were capable of ready displacement of Ca2+ from a Ca2+-PC complex, while Mg2+ was less effective in this regard. The alpha-thrombin-catalyzed activation of PC was inhibited by the presence of Ca2+. A kinetic analysis of this effect demonstrated that it was, in large part, due to an increase in the Km of the reaction. Addition of other divalent cations, e.g. Mn2+, Sr2+, and Mg2+, in place of Ca2+ also resulted in inhibition of the alpha-thrombin-catalyzed activation of PC in a manner which paralleled their ability to displace Ca2+ from a Ca2+-PC complex. On the other hand, the activation of PC by the coagulant protein from Russell's Viper venom was augmented by the presence of Ca2+. Other divalent metal ions, such as Sr2+ and Mn2+, in the absence of Ca2+, also weakly stimulated this reaction. Mg2+ was without notable effect.  相似文献   

7.
Monoclonal antibodies (mAbs) raised against reduced and alkylated thrombospondin (TSP) were screened for the ability to react with Ca2+-replete TSP versus EDTA-treated TSP. Two mAbs designated A6.1 and D4.6 were found to react much more strongly with TSP after EDTA treatment. The dissociation constants for these mAbs were measured in 5 mM EDTA and found to be 6 X 10(-10) M for A6.1 and 7 X 10(-9) M for D4.6. Binding to A6.1 was undetectable in the presence of 1 mM Ca2+ while binding of D4.6 occurred with about 100-fold lower affinity. The Ca2+ concentration dependence of A6.1 binding was broad with a midpoint near 50 microM free Ca2+ while that of D4.6 showed a sharp transition below 0.1 microM. Upon dialysis of EDTA-treated TSP into Ca2+ containing buffer, the binding of the mAbs was prevented or decreased, indicating reversibility of the conformational transition induced by the initial removal of Ca2+ . Mg2+ can compete with the Ca2+ binding sites involved in mAb binding, but TSP dialyzed from Ca2+ into Mg2+ binds the two mAbs as well as EDTA-treated TSP, indicating that Mg2+ cannot maintain the Ca2+-replete structure of TSP. The proteolytic fragments of TSP with which the two mAbs react were determined by probing Western blots of digests of TSP with the mAbs. A6.1 reacts with the 70-kDa fragment generated by chymotrypsin in EDTA which contains the interchain disulfide bonds of TSP and the binding site(s) for type V collagen (Mumby, S. M., Raugi, G. J., and Bornstein, P. (1984) J. Cell Biol. 98, 646-652). D4.6 reacts with fragments of 140 and 120 kDa found in digests of Ca2+-replete TSP which are absent from digests in EDTA. Electron microscopy of rotary shadowed, carbon-coated replicas of TSP mAb complexes confirms the Ca2+ sensitivity of mAb binding and has been used to localize the epitopes for both mAbs on the three-dimensional structure of TSP.  相似文献   

8.
The binding isotherms of Mn2+ to bovine plasma protein C (PC), des(1-41)-light chain protein C (GDPC), and activated GDPC (GDAPC) have been measured. PC contains 14-16 total Mn2+ binding sites, a value that is reduced to approximately 7-8 in the presence of NaCl. The average Kd of the latter sites is 230 +/- 30 microM. Upon removal of a 41-residue peptide from the amino terminus of the light chain of PC, and, concomitantly, all of the gamma-carboxyglutamic acid residues, the resulting protein, GDPC, possesses a single Mn2+ site of Kd = 120 +/- 20 microM. Activation of GDPC to GDAPC results in a slight lowering of the Kd for the single Mn2+ binding site to 53 +/- 8 microM, a value that is essentially unchanged in the presence of monovalent cations, a competitive inhibitor of the enzyme, or an active site directed affinity label. The Mn2+ on GDAPC is displaced by Ca2+, suggesting that the protein binding site for these two divalent cations is the same. These studies establish that Mn2+ is a suitable spectroscopic probe for the Ca2+ binding site of GDAPC, and that the divalent cation site is separate from the monovalent cation site(s) and the active site of the enzyme.  相似文献   

9.
Five mouse mAb were generated against a synthetic peptide corresponding to the proposed Ca(2+)-binding region of human C-reactive protein (CRP). The peptide consists of amino acids 134 to 148 and possesses a calmodulin Ca(2+)-binding sequence. The mAb reacted with a surface epitope(s) on native, intact CRP as well as the closely related pentraxin protein, serum amyloid P-component. Three of the 5 mAb inhibited the Ca(2+)-dependent phosphorylcholine-(PC) binding activity of CRP, but did not bind to the PC-binding region itself. Four of the five mAb also inhibited the recognition of an epitope in the PC-binding site of CRP. Four of the mAb partially, or completely, protected CRP from selective cleavage by pronase between residues 146 and 147. The findings suggest that the Ca(2+)-binding region is on the surface of CRP, has substantial flexibility, and is probably responsible for the allosteric effects of Ca2+ ions on CRP.  相似文献   

10.
The interactions of Tb3+ and sarcoplasmic reticulum (SR) were investigated by inhibition of Ca2+-activated ATPase activity and enhancement of Tb3+ fluorescence. Ca2+ protected against Tb3+ inhibition of SR ATPase activity. The apparent association constant for Ca2+, determined from the protection, was about 6 x 10(6) M-1, suggesting that Tb3+ inhibits the ATPase activity by binding to the high affinity Ca2+ binding sites. Mg2+ did not protect in the 2-20 mM range. The association constant for Tb3+ binding to this Ca2+ site was estimated to be about 1 x 10(9) M-1. No cooperativity was observed for Tb3+ binding. No enhancement of Tb3+ fluorescence was detected. A second group of binding sites, with weaker affinity for Tb3+, was observed by monitoring the enhancement of Tb3+ fluorescence (lambda ex 285 nm, lambda em 545 nm). The fluorescence intensity increased 950-fold due to binding. Ca2+ did not complete for binding at these sites, but Mg2+ did. The association constant for Mg2+ binding was 94 M-1, suggesting that this may be the site that catalyzes phosphorylation of the ATPase by inorganic phosphate. For vesicles, Tb3+ binding to these Mg2+ sites was best described as binding to two classes of binding sites with negative cooperativity. If the SR ATPase was solubilized in the nonionic detergent C12E9 (dodecyl nonaoxyethylene ether alcohol), in the absence of Ca2+, only one class of Tb3+ binding sites was observed. The total number of sites appeared to remain constant. If Ca2+ was included in the solubilization step, Tb3+ binding to these Mg2+ binding sites displayed positive cooperativity (Hill coefficient, 2.1). In all cases, the apparent association constant for Tb3+, in the presence of 5 mM MgCl2, was in the range of 1-5 x 10(4) M-1.  相似文献   

11.
V B Lawlis  T E Roche 《Biochemistry》1981,20(9):2519-2524
Micromolar Ca2+ markedly reduces NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex [Lawlis, V. B., & Roche, T. E. (1980) Mol. Cell. Biochem. 32, 147-152]. Product inhibition patterns from initial velocity studies conducted at less than 10(-9) M or at 1.5 X 10(-5) M Ca2+ with NAD+, CoA, or alpha-ketoglutarate as the variable substrate showed that NADH was a noncompetitive inhibitor with respect to each of these substrates, except at high NAD+ concentrations, where reciprocal plots were nonlinear and the inhibition pattern for NADH vs. NAD+ changed from a noncompetitive to a competitive pattern. From slope and intercept replots, 2-fold to 12-fold higher inhibition constants were estimated for inhibition by NADH vs. the various substrates in the presence of 1.5 X 10(-5) M Ca2+ than for inhibition at less than 10(-9) M Ca2+. These inhibition patterns and the lack of an effect of Ca2+ on the inhibition of the dihydrolipoyl dehydrogenase component suggested that Ca2+-modulated NADH inhibition occurs at an allosteric site with competitive binding at the site by high levels of NAD+. Decarboxylation of alpha-keto[1-14C]glutarate by the resolved alpha-ketoglutarate dehydrogenase component was investigated in the presence of 5.0 mM glyoxylate which served as an efficient acceptor. NADH (0.2 mM) or 1.0 mM ATP inhibited the partial reaction whereas 15 muM Ca2+, 1.0 mM ADP, or 10 mM NAD+ stimulated the partial reaction and reduced NADH inhibition of this reaction. Thus these effectors alter the activity of the alpha-ketoglutarate dehydrogenase complex by binding at allosteric sites on the alpha-ketoglutarate dehydrogenase component. Inhibition by NADH over a wide range of NADH/NAD+ ratios was measured under conditions in which the level of alpha-ketoglutarate was adjusted to give matching control activities at less than 10(-9) M Ca2+ or 1.5 X 10(-5) M Ca2+ in either the presence or the absence of 1.6 mM ADP. These studies establish that both Ca2+ and ADP decreased NADH inhibition under conditions compensating for the effects of Ca2+ and ADP on S0.5 for alpha-ketoglutarate. ADP was particularly effective in reducing NADH inhibition; further studies are required to determine whether this occurs through binding of NADH and ADP at the same, overlapping, or interacting sites.  相似文献   

12.
C-reactive protein (CRP) is a major acute phase reactant in most mammalian species. CRP molecules from all species display Ca2(+)-dependent binding to phosphorylcholine (PC). The conserved PC-binding region of CRP corresponds to amino acids 51-66 within the human CRP sequence. A synthetic peptide composed of residues 47-63 of human CRP was previously shown to possess PC binding activity. The charged amino acids at positions 57, 58, 60, and 62 of this synthetic peptide were critical for PC-binding based on lower binding activity of synthetic peptides containing uncharged residues at these positions. The PC-binding peptide was used to generate mouse mAb that were tested for reactivity with intact CRP and with the TEPC-15 (T-15) mouse myeloma protein that also binds PC. The PC-binding peptide of CRP was recognized by two mAb specific for the T-15 Id. One of the mAb generated against the PC-binding peptide of CRP (IID6.2) recognized an epitope on the T-15 protein that was also recognized by the near-binding site-specific mAb (F6) to the T-15 PC-Id. Binding of IID6.2 to T-15 myeloma protein was not inhibited by PC and did not require Ca2+; however, binding was inhibited by the synthetic PC-binding peptide itself. Recognition of synthetic peptides containing uncharged amino acid substitutions by mAb F6 and IID6.2 was greatly reduced indicating that the shared epitope on T-15 and CRP was composed of similar charged residues. Therefore, CRP displays the same idiotope as an antibody that shares its specificity for the hapten, PC.  相似文献   

13.
Ca2+ binding to the wild type recombinant oncomodulin was studied by equilibrium flow dialysis in the absence and presence of 1, 2, and 10 mM Mg2+. Direct Mg2(+)-binding experiments were carried out by the Hummel-Dryer gel filtration technique. These studies revealed that in the absence of Mg2+ oncomodulin binds two Ca2+ with KCa = 2.2 x 10(7) and 1.7 x 10(6) M-1, respectively. In the absence of Ca2+ the protein binds only one Mg2+ with KMg = 4.0 x 10(3) M-1.Mg2+ antagonizes Ca2+ binding at the high affinity site according to the rule of direct competition. Ca2+ binding to the low affinity site is only slightly affected by Mg2+, so that in the presence of 2-3 mM Mg2+ the two sites have apparently an equal affinity for Ca2+. Microcalorimetry showed that, in spite of the different affinities of the two Ca2(+)-binding sites, delta H0 for the binding of each Ca2+ is identical and exothermic for -18.9 kJ/site. It follows that the entropy gain upon binding of Ca2+ is +77.1 J K-1 site-1 for the high affinity Ca2(+)-Mg2+ site and +56.0 J K-1 site-1 for the low affinity Ca2(+)-specific site. Mg2+ binding is endothermic for +13 kJ/site with an entropy change of +111 J K-1 site-1. The thermodynamic characteristics of the Ca2(+)-Mg2+ site resemble most those of site II (the so-called EF domain) of toad alpha-parvalbumin. The characteristics of Ca2+ binding to the specific site (likely the CD domain) are different from those of the Ca2+ specific sites in troponin C and in calmodulin and suggest that in oncomodulin hydrophobic forces do not play a predominant role in the binding process at the specific site.  相似文献   

14.
We developed a fluorescence-based assay method for determining ligand binding activities of C-reactive protein (CRP) in solution. Using this method, we compared the phosphorylcholine (PC)- and polycation-based binding activities of human CRP. The PC-based binding required calcium, whereas a polycation (e.g. poly-l-lysine) was bound in the presence of either calcium or EDTA, the binding being stronger in the presence of EDTA. The published crystallographic structures of CRP and the CRP.PC complex show it to be a ring-shaped pentamer with a single PC-binding site per subunit facing the same direction. As expected from such a structure, binding affinity of a ligand increased tremendously when multiple PC residues were present on a macromolecular structure. In addition to PC-related structures, certain sugar phosphates (e.g. galactose 6-phosphate) are bound near the PC-binding site, and one of the sugar hydroxyl groups appears to interact with CRP. The best small ligands for the polycationic binding site were Lys-Lys and Lys4. Because of the presence of multiple Lys-Lys sequences, polylysines have tremendously enhanced affinity. Although PC inhibits both PC- and polycation-based binding, none of the amines that inhibit polylysine binding inhibits PC binding, suggesting that the PC and polycationic binding sites do not overlap.  相似文献   

15.
We report a study of the substratum and medium requirements for attachment and neurite outgrowth by cells of the pheochromocytoma-derived PC12 line. In attachment medium containing both Ca2+ and Mg2+, more than 50% of cells attached within 1 hr to petri dishes coated with native collagen Types I/III or II, native or denatured collagen Type IV, laminin, wheat germ agglutinin (WGA), or poly-L-lysine; attachment to dishes coated with nerve growth factor (NGF) was only about 20% and attachment to uncoated dishes or to dishes coated with fibronectin or gelatin was almost nil. Neither prior culturing in the presence of NGF nor addition of NGF to the attachment medium significantly affected the extent of attachment to collagen or laminin. With Ca2+ (1 mM) as the sole divalent cation, cells attached normally to WGA, polylysine, and NGF, but failed to attach to collagen or laminin. With Mg2+ (1 mM) as the only divalent cation, attachment to all substrata was about the same as in medium with both Ca2+ and Mg2+. Like the ionic requirements, the kinetics of attachment, insensitivity to protease treatment of the cells, and inhibition by low temperature and sodium azide were similar for PC12 attachment to collagen and laminin, suggesting that a common molecular mechanism may underlie attachment to these substrata. The only significant difference observed was that addition of WGA (30 micrograms/ml) to the attachment medium inhibited attachment to collagen but promoted attachment to laminin. Finally, PC12 cells extended neurites on laminin, on native collagens I/III, II, and IV, and on denatured collagen IV; they did not extend neurites on denatured collagens I/III or II, NGF, or WGA. Neurite outgrowth on collagen and laminin occurred with Mg2+ as the sole divalent cation. These results suggest that the same Mg2+-dependent adhesion mechanism operates at the cell body and at the growth cone.  相似文献   

16.
The protease domain of coagulation factor VIIa (FVIIa) is homologous to trypsin with a similar active site architecture. The catalytic function of FVIIa is regulated by allosteric modulations induced by binding of divalent metal ions and the cofactor tissue factor (TF). To further elucidate the mechanisms behind these transformations, the effects of Zn2+ binding to FVIIa in the free form and in complex with TF were investigated. Equilibrium dialysis suggested that two Zn2+ bind with high affinity to FVIIa outside the N-terminal gamma-carboxyglutamic acid (Gla) domain. Binding of Zn2+ to FVIIa, which was influenced by the presence of Ca2+, resulted in decreased amidolytic activity and slightly reduced affinity for TF. After binding to TF, FVIIa was less susceptible to zinc inhibition. Alanine substitutions for either of two histidine residues unique for FVIIa, His216, and His257, produced FVIIa variants with decreased sensitivity to Zn2+ inhibition. A search for putative Zn2+ binding sites in the crystal structure of the FVIIa protease domain was performed by Grid calculations. We identified a pair of Zn2+ binding sites in the Glu210-Glu220 Ca2+ binding loop adjacent to the so-called activation domain canonical to serine proteases. Based on our results, we propose a model that describes the conformational changes underlying the Zn2+-mediated allosteric down-regulation of FVIIa's activity.  相似文献   

17.
Nd3+ binding to sarcoplasmic reticulum (SR) was detected by inhibition of ATPase activity and directly by a fluorimetric assay. Both methods indicated that Nd3+ inhibited the ATPase activity by binding in the high-affinity Ca2+ binding sites. The stoichiometry of binding was about 11 nmol of Nd3+ bound per mg of SR proteins at pNd = 6.5. At higher [Nd3+], substantial nonspecific binding occurred. The association constant for Nd3+ binding to the high-affinity Ca2+ binding sites was estimated to be near 2 X 10(9) M-1. When the CaATPase was inactivated with fluorescein isothiocyanate (FITC), 5.3 nmol were bound per mg of SR protein. This fluorescent probe is known to bind in the ATP binding site. The stoichiometry of Nd3+ binding to FITC-labeled CaATPase was the same, within experimental error, as to the unlabeled CaATPase. Fluorescence energy transfer between FITC in the ATP site and Nd3+ in the Ca2+ sites was found to be very small. This donor-acceptor pair has a critical distance of 0.93 nm and the distance between the ATP site and the closest Ca2+ was estimated to be greater than 2.1 nm. Parallel measurements with FITC-labeled SR and Co2+, an acceptor with a critical distance 1.2 nm, suggested the ATP and Ca2+ binding sites are greater than 2.6 nm apart.  相似文献   

18.
A recombinant protein (Lbs-1) containing the N-terminal 581 amino acids of the mouse type 1 inositol 1,4,5-trisphosphate receptor (IP3R-1), including the complete IP3-binding site, was expressed in the soluble fraction of E. coli. The characteristics of IP3 binding to this protein were similar as observed previously for the intact IP3R-1. Ca2+ dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 200 nM. This effect represented a decrease in the affinity of Lbs-1 for IP3, because the Kd increased from 115 +/- 15 nM in the absence to 196 +/- 18 nM in the presence of 5 microM Ca2+. The maximal effect of Ca2+ on Lbs-1 (5 microM Ca2+, 42.0 +/- 6.4% inhibition) was similar to the maximal inhibition observed for microsomes of insect Sf9 cells expressing full-length IP3R-1 (33.8 +/- 10.2%). Conceivably, the two contiguous Ca2+-binding sites (residues 304-450 of mouse IP3R-1) previously found by us (Sienaert, I., Missiaen, L., De Smedt, H., Parys, J.B., Sipma, H., and Casteels, R. (1997) J. Biol. Chem. 272, 25899-25906) mediate the effect of Ca2+ on IP3 binding to IP3R-1. Calmodulin also dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 3 microM. Maximal inhibition (10 microM calmodulin, 43.1 +/- 5.9%) was similar as observed for Sf9-IP3R-1 microsomes (35.8 +/- 8.7%). Inhibition by calmodulin occurred independently of Ca2+ and was additive to the inhibitory effect of 5 microM Ca2+ (together 74.5 +/- 5.1%). These results suggest that the N-terminal ligand-binding region of IP3R-1 contains a calmodulin-binding domain that binds calmodulin independently of Ca2+ and that mediates the inhibition of IP3 binding to IP3R-1.  相似文献   

19.
The interactions of vascular smooth muscle caldesmon with actin, tropomyosin, and calmodulin were determined under conditions in which the four proteins can form reconstituted Ca2+-sensitive smooth muscle thin filaments. Caldesmon bound to actin in a complex fashion with high affinity sites (K = 10(7) M-1) saturating at a stoichiometry of 1 per 28 actins, and lower affinity sites at 1 per 7 actins. The affinity of binding was increased in the presence of tropomyosin, and this could be attributed to a direct interaction between caldesmon and tropomyosin which was demonstrated using caldesmon cross-linked to Sepharose. In the presence of tropomyosin, occupancy of the high affinity sites was associated with inhibition of actin-activated myosin MgATPase activity. Caldesmon was found to bind to calmodulin in the presence of Ca2+, with an affinity of 10(6) M-1. The binding of Ca2+ X calmodulin to caldesmon was associated with the neutralization of inhibition of actin-tropomyosin. Ca2+ X calmodulin binding reduced but did not abolish the binding of caldesmon to actin-tropomyosin. From this data we have proposed a model for smooth muscle thin filaments in which Ca2+ regulates activity by converting the inhibited actin-tropomyosin-caldesmon complex to the active complexes, actin-tropomyosin-caldesmon-calmodulin X Ca2+ and actin-tropomyosin.  相似文献   

20.
Calcium binding to calmodulin. Cooperativity of the calcium-binding sites   总被引:3,自引:0,他引:3  
The effects of Mg2+ ion, pH, and KCl concentration on Ca2+ binding to calmodulin were studied by using a Ca2+ ion-sensitive electrode. The Ca2+ ion affinity of calmodulin increased with increasing pH or decreasing KCl concentration. Cooperativity between the Ca2+-binding sites was observed, and increased with decreasing pH or increasing KCl concentration. Free Ca2+ ion concentration was decreased by adding MgCl2 ion at low Mg2+ concentration and increased at higher concentrations in the presence of small amounts of Ca2+ ion. The decrease of free Ca2+ ion concentration by Mg2+ ion strongly suggests cooperativity between the Ca2+-binding sites, and it is difficult to explain the decrease in terms of the ordered binding models previously proposed. These results can be explained by a simple model which has four equivalent binding sites that bind Ca2+ and Mg2+ competitively, and showing cooperativity when either Ca2+ or Mg2+ is bound. Mg2+ ion binding to calmodulin was measured in the presence or absence of Ca2+ to confirm the validity of this model, and no Mg2+-specific site was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号