首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Exposure of thymoma BW 5147 cells to cold (0-2 degrees C) followed by rewarming at 37 degrees C (cold shock) resulted in internucleosomal DNA cleavage. Sensitivity to cold shock-induced cell death was critically dependent on the serum concentration in the medium and limited to serum-deficient medium (2% serum concentration), whereas cells in the complete growth medium (10%) were completely resistant. RNA/protein-synthesis inhibitors (cycloheximide and actinomycin D) had no effect on cold shock-induced DNA cleavage in BW 5147 cells. The DNA fragmentation seems to be independent of increase in the cytosolic Ca2+ level. Moreover, reduction in the calcium content of the external medium by EGTA induced DNA cleavage. Incubation of BW 5147 cells in the presence of colchicine and cytochalasin B led to the apoptosis. The latter suggests that the internucleosomal DNA cleavage induced by cold shock may be concerned with the disruption of some cytoskeletal network caused by cooling. The results are discussed in relation to cell proliferation.  相似文献   

2.
Induced thermotolerance to apoptosis in a human T lymphocyte cell line.   总被引:15,自引:0,他引:15  
A brief exposure to elevated temperatures elicits, in all organisms, a transient state of increased heat resistance known as thermotolerance. The mechanism for this thermotolerant state is unknown primarily because it is not clear how mild hyperthermia leads to cell death. The realization that cell death can occur through an active process of self destruction, known as apoptosis, led us to consider whether thermotolerance provides protection against this mode of cell death. Apoptosis is a common and essential form of cell death that occurs under both physiological and pathological conditions. This mode of cell death requires the active participation of the dying cell and in this way differs mechanistically from the alternative mode of cell death, necrosis. Here we show that mild hyperthermia induces apoptosis in a human leukemic T cell line. This is evidenced by chromatin condensation, nuclear fragmentation and the cleavage of DNA into oligonucleosome size units. DNA fragmentation is a biochemical hallmark of apoptosis and requires the activation of an endogenous endonuclease. The extent of DNA fragmentation was proportional to the severity of heat stress for cells heated at 43 degrees C from 30 to 90 minutes. A brief conditioning heat treatment induced a resistance to apoptosis. This was evident as a resistance to DNA fragmentation and a reduction in the number of apoptotic cells after a heat challenge. Resistance to DNA fragmentation developed during a recovery period at 37 degrees C and was correlated with enhanced heat shock protein (hsp) synthesis. This heat-induced resistance to apoptosis suggests that thermotolerant cells have gained the capacity to prevent the onset of this pathway of self-destruction. An examination of this process in heated cells should provide new insights into the molecular basis of cellular thermotolerance.  相似文献   

3.
4.
Cold-inducible RNA-binding protein (RBM3) is suggested to be involved in the regulation of skeletal muscle mass. Cell death pathways are implicated in the loss of muscle mass and therefore the role of RBM3 in muscle apoptosis in C(2)C(12) myoblasts was investigated in this study. RBM3 overexpression was induced by either cold shock (32°C exposure for 6 h) or transient transfection with a myc-tagged RBM3 expression vector. Cell death was induced by H(2)O(2) (1,000 μM) or staurosporine (StSp, 5 μM), and it was shown that cold shock and RBM3 transfection were associated with attenuation of morphological changes and an increase in cell viability compared with normal temperature or empty vector, respectively. No changes in proliferation were observed with either cold shock or RBM3 transfection. DNA fragmentation was not increased in response to H(2)O(2), and a cell permeability assay indicated that cell death in response to H(2)O(2) is more similar to necrosis than apoptosis. RBM3 overexpression reduced apoptosis and the collapse of the membrane potential in response to StSp. Moreover, the increase in caspase-3, -8, and -9 activities in response to StSp was returned to control levels with RBM3 overexpression. These results indicate that increased RBM3 expression decreases muscle cell necrosis as well as apoptosis and therefore RBM3 could potentially serve as an intervention for the loss of muscle cell viability during muscle atrophy and muscle diseases.  相似文献   

5.
Stress response is a universal phenomenon. However, a rat histiocytic cell line, BC-8, showed no heat shock response and failed to synthesize heat shock protein 70 (hsp70) upon heat shock at 42 degrees C for 30 min. BC-8 is a clone of AK-5, a rat macrophage tumor line that is adapted to grow in culture and has the same chromosome number and tumorigenic potential as AK-5. An increase in either the incubation temperature or time or both to BC-8 cells leads to loss of cell viability. In addition, heat shock conditions activated apoptotic cell death in these cells as observed by cell fragmentation, formation of nuclear comets, apoptotic bodies, DNA fragmentation and activation of ICE-like cysteine proteases. Results presented here demonstrate that BC-8 cells cannot mount a typical heat shock response unlike all other eukaryotic cells and that in the absence of induction of hsps upon stress, these cells undergo apoptosis at 42 degrees C.  相似文献   

6.
Two lines of suspension culture cells were obtained from a hybrid seedling of Nicotiana suaveolens Lehm. x N. tabacum L. cv. Hicks-2 expressing temperature-sensitive lethality. One of them (LH line) was inducible cell death in accordance with the lethality at 28 degrees C but not under high-temperature conditions (36 degrees C). Another one (SH line) lost the lethality and survived at 28 degrees C. The cells of LH line showed apoptotic changes when they were cultured at 28 degrees C. Fragmentation of nuclei was correlated with the lethality in the cells, as confirmed by fluorimetry of the nuclear DNA using laser scanning cytometry. Agarose gel analysis of DNA extracted from the cells expressing the lethality revealed a specific ladder pattern suggesting nucleosomal fragmentation that is one of the biochemical characteristics of apoptosis. From these facts, we confirmed that the process of cell death leading to hybrid lethality in the cells is certainly apoptosis. Hybrid cells were used in the experiments to estimate the point of no return in temperature-sensitive lethality and to examine the influence of cation in DNA fragmentation during apoptosis. The utility of hybrid cells as an experimental system for studies of hybrid lethality and apoptosis in plants was confirmed.  相似文献   

7.
Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type HSV blocks the execution of the cell death program triggered by viral gene products, by the effectors of the immune system such as the Fas and tumor necrosis factor pathways, or by nonspecific stress agents such as either osmotic shock induced by sorbitol or thermal shock. A report from this laboratory showed that caspase inhibitors do not block DNA fragmentation induced by infection with the HSV-1 d120 mutant. To identify the events in programmed cell death induced and blocked by HSV-1, we examined cells infected with wild-type virus or the d120 mutant or cells infected and exposed to sorbitol. We report that: (i) the HSV-1 d120 mutant induced apoptosis by a caspase-3-independent pathway inasmuch as caspase 3 was not activated and DNA fragmentation was not blocked by caspase inhibitors even though the virus caused cytochrome c release and depolarization of the inner mitochondrial membrane. (ii) Cells infected with wild-type HSV-1 exhibited none of the manifestations associated with programmed cell death assayed in these studies. (iii) Uninfected cells exposed to osmotic shock succumbed to caspase-dependent apoptosis inasmuch as cytochrome c was released, the inner mitochondrial potential was lost, caspase-3 was activated, and chromosomal DNA was fragmented. (iv) Although caspase-3 was activated in cells infected with wild-type HSV-1 and exposed to sorbitol, cytochrome c outflow, depolarization of the inner mitochondrial membrane, and DNA fragmentation were blocked. We conclude that although d120 induces apoptosis by a caspase-3-independent pathway, the wild-type virus blocks apoptosis induced by this pathway and also blocks the caspase-dependent pathway induced by osmotic shock. The block in the caspase-dependent pathway may occur downstream of caspase-3 activation.  相似文献   

8.
The rapid cold-hardening (RCH) response increases the cold tolerance of insects by protecting against non-freezing, cold-shock injury. Apoptosis, or programmed cell death, plays important roles in development and the elimination of sub-lethally damaged cells. Our objectives were to determine whether apoptosis plays a role in cold-shock injury and, if so, whether the RCH response protects against cold-induced apoptosis in Drosophila melanogaster. The present study confirmed that RCH increased the cold tolerance of the adults at the organismal level. No flies in the cold-shocked group survived direct exposure to ‒7°C for 2 h, whereas significantly more flies in the RCH group survived exposure to ‒7°C for 2 h after a 2-h exposure to 5°C. We used a TUNEL assay to detect and quantify apoptotic cell death in five groups of flies including control, cold-shocked, RCH, heat-shocked (37.5°C, 30 min), and frozen (‒20°C, 24 h) and found that apoptosis was induced by cold shock, heat shock, and freezing. The RCH treatment significantly improved cell viability by 38% compared to the cold-shocked group. Cold shock-induced DNA fragmentation shown by electrophoresis provided further evidence for apoptosis. SDS-PAGE analysis revealed an RCH-specific protein band with molecular mass of ∼150 kDa. Western-blotting revealed three proteins that play key roles in the apoptotic pathway: caspase-9-like (apoptotic initiator), caspase-3-like (apoptotic executioner) and Bcl-2 (anti-apoptotic protein). Consequently, the results of this study support the hypothesis that the RCH response protects against cold-shock-induced apoptosis.  相似文献   

9.
Chronic inflammation is associated with inducible nitric oxide synthase expression in infiltrating and resident cells (epithelia, neurons) and an exaggerated release of nitric oxide. NO can induce apoptosis in macrophages and tumour cell lines. We investigated whether NO induced cell death in an epithelial (T84) cell fine via apoptosis. Culture T84 cells were exposed to a bolus of NO (40 or 80 muM) dissolved in Hank's balanced salt solution (HBSS) supplemented with 10% fetal calf serum (FCS). After incubation for 4 h at 37( degrees )C in 5% CO(2), cells were either stained for DNA fragmentation with the TdT-mediated dUTP-biotin nick end labelling (TUNEL) method, or cytosolic DNA fragments quantified by a cell death detection ELISA assay. Nitric oxide induced apoptosis in a dose-dependent manner which preceded frank cell death (failure to exclude Trypan blue). These data suggest that epithelial cell death may be NO dependent and via apoptosis, in states of gut inflammation.  相似文献   

10.
11.
Hyperthermia induces apoptosis in thymocytes.   总被引:12,自引:0,他引:12  
Mild hyperthermia (43 degrees C for 1 h) induces extensive double-stranded DNA fragmentation and, at a later time, cell death in murine thymocytes. The cleavage of DNA into oligonucleosome-sized fragments resembles that observed in examples of apoptosis including radiation-induced death of thymocytes. Following hyperthermia, incubation at 37 degrees C is necessary to detect DNA fragmentation, although protein and RNA synthesis do not seem to be required. Two protein synthesis inhibitors, cycloheximide and emetine, and two RNA synthesis inhibitors, actinomycin D and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole, do not inhibit DNA fragmentation or cell death in heated thymocytes at concentrations which significantly block these effects in irradiated thymocytes. We have used this difference in sensitivity to show that the DNA fragmentation induced in thymocytes which are irradiated and then heated seems to be caused only by the heating and not by the irradiation.  相似文献   

12.
13.
Apoptosis induced by cold shock in vitro is dependent on cell growth phase   总被引:4,自引:0,他引:4  
Chinese hamster V79 fibroblast cells were exposed to brief periods of cold but non-freezing temperatures at different points on the population growth curve. Upon rewarming, cells at the transition from logarithmic to stationary growth exhibited apoptosis (programmed cell death). Cells in other stages of growth, or after reentry into logarithmic growth by refeeding, did not exhibit apoptosis. Apoptosis was expressed by marked cytoplasmic blebbing, by a characteristic non-random fragmentation of DNA into nucleosomal-sized pieces, and by loss of colony-forming ability. The data suggest that cold shock served as a stimulus for susceptible cells to undergo apoptosis. Thus, the experiments describe a new in vitro system for studying the mechanisms of apoptosis.  相似文献   

14.
Chronic lymphocytic leukemia lymphocytes were used to study mechanisms involved in apoptosis (programmed cell death). Apoptosis, which was determined by morphological changes including cell death and by internucleosomal DNA fragmentation, occurred during culture for 1 to 2 days in a portion of the cells from three of the four patients tested. Most of the cells underwent apoptosis and DNA fragmentation was greatly enhanced when cells were cultured in the presence of the microtubule inhibitor colchicine, the topoisomerase II inhibitor etoposide, or the glucocorticoid methylprednisolone. Tumor-promoting phorbol esters inhibited spontaneous DNA fragmentation and cell death including that induced by colchicine, etoposide, and methylprednisolone, indicating that they act on an event common to apoptosis caused by diverse stimuli. Phorbol esters probably act through protein phosphorylation, since they were effective at concentrations which modulated protein kinase C (PKC) and their action was prevented by H-7, which binds to and inactivates the catalytic site of PKC. In the absence of phorbol ester, H-7 itself induced some apoptosis. These findings implicate PKC in the suppression of apoptosis, but its precise role requires systematic investigation.  相似文献   

15.
应用台盼蓝活体染色方法、Hoechst332 5 8荧光探针技术研究低温冷休克 (4℃ )对人肝癌细胞系 (74 0 2 )、秋行军虫细胞系 (Sf9)、幼蚊细胞系 (C6 36 )及草鱼肾细胞系 (CIK)的影响。结果显示 :在冷休克处理 6天后 ,Sf9、C6 36、CIK、74 0 2细胞系的死亡率分别是 2 0 .0 3%、10 0 %、2 8.6 9%、10 0 % ;凋亡率分别为 2 .4 5 %、38.38%、8.2 5 %、96 .4 7% ,其细胞的死亡率远远大于凋亡率。可见冷休克导致细胞死亡过程中 ,应是细胞坏死和凋亡并存。但就其细胞凋亡的敏感性而言 ,4种细胞顺序应为 74 0 2 >C6 36 >CIK >Sf9。研究结果为在细胞水平、分子水平深入研究低体温生物离体细胞冷休克机理奠定基础。  相似文献   

16.
17.
18.
Thermal shocks induce changes in the nuclear phenotypes that correspond to survival (heterochromatin decondensation, nuclear fusion) or death (apoptosis, necrosis) responses in the Malpighian tubules of Panstrongylus megistus. Since thermal tolerance increased survival and molting rate in this species following sequential shocks, we investigated whether changes in nuclear phenotypes accompanied the insect survival response to sequential thermal shocks. Fifth instar nymphs were subjected to a single heat (35 or 40 degrees C, 1 h) or cold (5 or 0 degrees C, 1 h) shock and then subjected to a second shock for 12 h at 40 or 0 degrees C, respectively, after 8, 18, 24 and 72 h at 28 degrees C (control temperature). As with specimen survival, sequential heat and cold shocks induced changes in frequency of the mentioned nuclear phenotypes although their patterns differed. The heat shock tolerance involved decrease in apoptosis simultaneous to increase in cell survival responses. Sequential cold shocks did not involve cell/nuclear fusion and even elicited increase in necrosis with advancing time after shocks. The temperatures of 40 and 0 degrees C were more effective than the temperatures of 35 and 5 degrees C in eliciting the heat and cold shock tolerances, respectively, as shown by cytological analysis of the nuclear phenotypes. It is concluded that different sequential thermal shocks can trigger different mechanisms of cellular protection against stress in P. megistus, favoring the insect to adapt to various ecotopes.  相似文献   

19.
Exposure of neurons to H(2)O(2) results in both necrosis and apoptosis. Caspases play a pivotal role in apoptosis, but exactly how they are involved in H(2)O(2)-mediated cell death is unknown. We examined H(2)O(2)-induced toxicity in neuronal PC12 cells and the effects of inducible overexpression of the H(2)O(2)-scavenging enzyme catalase on this process. H(2)O(2) caused cell death in a time- and concentration-dependent manner. Cell death induced by H(2)O(2) was found to be mediated in part through an apoptotic pathway as H(2)O(2)-treated cells exhibited cell shrinkage, nuclear condensation and marked DNA fragmentation. H(2)O(2) also triggered activation of caspase 3. Genetic up-regulation of catalase not only significantly reduced cell death but also suppressed caspase 3 activity and DNA fragmentation. While the caspase 3 inhibitor DEVD inhibited both caspase 3 activity and DNA fragmentation induced by H(2)O(2) it did not prevent cell death. Treatment with the general caspase inhibitor ZVAD, however, resulted in complete attenuation of H(2)O(2)-mediated cellular toxicity. These results suggest that DNA fragmentation induced by H(2)O(2) is attributable to caspase 3 activation and that H(2)O(2) may be critical for signaling leading to apoptosis. However, unlike inducibly increased catalase expression and general caspase inhibition both of which protect cells from cytotoxicity, caspase 3 inhibition alone did not improve cell survival suggesting that prevention of DNA fragmentation is insufficient to prevent H(2)O(2)-mediated cell death.  相似文献   

20.
Hyperosmotic shock elicits a stress response in mammalian cells and can lead to apoptotic cell death. In the present study, we report that hyperosmotic shock can induce activation of a 36 kDa kinase detected by an in-gel kinase assay in several cell types, including mouse Balb/c 3T3 fibroblasts, and human Hep 3B and A431 cells. This 36 kDa kinase can be recognized by an antibody against the C-terminal region of a family of p21Cdc42/Rac-activated kinases (PAKs) on immunoblot. Further studies with this antibody and a PAK2-specific antibody against the N-terminal region of PAK2 demonstrate that hyperosmotic shock can induce cleavage of PAK2 to generate a 36 kDa C-terminal catalytic fragment in cells. The cleavage and activation of PAK2 was found to be closely associated with both DNA fragmentation and activation of an ICE/CED-3 family cysteine protease termed caspase-3 in hyperosmotically shocked cells. Furthermore, pretreating the cells with two caspase inhibitors (Ac-DEVD-cho and Ac-YVAD-cmk) could inhibit both cleavage/activation of PAK2 and DNA fragmentation induced by hyperosmotic shock. Moreover, all these hyperosmotic shock-induced changes (i.e., activation of caspase-3, cleavage/activation of PAK2, and DNA fragmentation) in cells could be blocked by antioxidants such as ascorbic acid (vitamine C), α-tocopherol (vitamine E), dithiothreitol, β-mercaptoethanol, and glutathione. Taken together, our results show that PAK2 is cleaved and activated via a caspase-dependent mechanism during hyperosmotic shock–induced apoptosis and suggest the involvement of antioxidant-preventable oxidative stress in inducing this process. J. Cell. Physiol. 178:397–408, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号