首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet receptor occupancy with factor IXa promotes factor X activation   总被引:3,自引:0,他引:3  
To investigate the activated platelet surface as a locus for factor X activation, the functional consequences of factor IXa binding to platelets were studied. The concentration of factor IXa required for half-maximal rates of factor X activation in the presence of factor VIIIa and thrombin-activated platelets was 0.53 nM, which is close to the Kd (0.56 nM) for factor IXa binding to platelets under identical conditions, determined from equilibrium binding studies. In direct comparative experiments, there was a close correspondence between equilibrium binding of factor IXa to thrombin-activated platelets in the presence of factor VIIIa and kinetic determinations of factor X activation rates. Analysis by polyacrylamide gel electrophoresis revealed that 125I-labeled factor IXa bound to platelets was structurally intact and did not form covalent complexes with platelet proteins. Factor IXa active site-inhibited by 5-dimethylaminonaphthalene-1-sulfonyl glutamyl-glycylarginyl chloromethyl ketone was shown to be a competitive inhibitor of factor IXa binding in the absence (Ki = 2.3 nM) and presence (Ki = 0.43 nM) of factor VIIIa and factor X and of factor X activation (Ki = 0.4 nM) by factor IXa in the presence of factor VIIIa, indicating that the generation of factor Xa is not required for factor IXa binding and that factor IXa bound to activated platelets in the presence of factor VIIIa is closely coupled with rates of factor X activation. We conclude that factor IXa bound tightly to a platelet receptor in the presence of factor VIIIa is the enzyme active in factor X activation.  相似文献   

2.
Activation of coagulation factor X via the intrinsic pathway requires the assembly of factors IXa and VIII on lipid membranes. It is known that the platelet expresses membrane sites for assembly of factors IXa/VIII and promotes efficient factor X activation. We now show that human blood monocytes, but not lymphocytes or polymorphonuclear leukocytes, also express appropriate sites for factors IXa/VIII assembly. The maximal rate of factor X activation by factors IXa (0.75 nM) and VIII (1 unit/ml) assembled on monocytes is similar to the maximal rate on platelets. This rate, adjusted per micromole of lipid phosphorus, is 1636 +/- 358 nM factor Xa/min on monocyte, and 1569 +/- 54 nM factor Xa/min on platelets. At physiologic concentrations of factors X and VIII, the activation rate increases with factor IXa concentration asymptotically approaching a maximum. Half-maximal rate is achieved with 1.0 +/- 0.16 nM factor IXa. Monocytes and macrophages, but not platelets, can express membrane tissue factor and thus promote simultaneous assembly of two distinct factor X-activating protease complexes. In these studies, blood monocytes and alveolar macrophages are used as membrane sources in kinetic experiments comparing factor X activation by intrinsic (factor IXa/VIII) versus extrinsic (factor VII/tissue factor) protease complexes. At plasma concentration of factors VIII and VII, apparent Km on the monocyte is 14.6 +/- 1.4 nM for intrinsic and 117.0 +/- 10.1 nM for extrinsic activation. The apparent Km on alveolar macrophages is 12.1 +/- 1.9 and 90.6 +/- 10.2 nM for intrinsic and extrinsic activation, respectively. Maximal rates on monocytes at saturating concentration of factors IXa, VIII, and VII are 48.0 +/- 11.2 nM factor Xa/min, for intrinsic activation, and 16.5 +/- 5.5 nM factor Xa/min, for extrinsic activation. These data show that the monocyte/macrophage is the only blood-derived cell type with membrane sites for both intrinsic and extrinsic pathway assembly. We have exploited this characteristic of the monocyte/macrophage membrane to demonstrate that factor X activation by the intrinsic pathway protease is more efficient than activation via the extrinsic pathway protease complex.  相似文献   

3.
We investigated the kinetics of the inhibitory action of antithrombin III and antithrombin III plus heparin during the activation of factor X by factor IXa. Generation and inactivation curves were fitted to a three-parameter two-exponentional model to determine the pseudo first-order rate constants of inhibition of factor IXa and factor Xa by antithrombin III/heparin. In the absence of heparin, the second-order rate constant of inhibition of factor Xa generated by factor IXa was 2.5-fold lower than the rate constant of inhibition of exogenous factor Xa. It appeared that phospholipid-bound factor X protected factor Xa from inactivation by antithrombin III. It is, as yet, unclear whether an active site or a nonactive site interaction between factor Xa and factor X at the phospholipid surface is involved. The inactivation of factor IXa by antithrombin III was found to be very slow and was not affected by phospholipid, calcium, and/or factor X. With unfractionated heparin above 40 ng/ml and antithrombin III at 200 nM, the apparent second-order rate constant of inhibition of exogenous and generated factor Xa were the same. Thus, in this case phospholipid-bound factor X did not protect factor Xa from inhibition. In the presence of synthetic pentasaccharide heparin, however, phospholipid-bound factor X reduced the rate constant about 5-fold. Pentasaccharide had no effect on the factor IXa/antithrombin III reaction. Unfractionated heparin (1 micrograms/ml) stimulated the antithrombin III-dependent inhibition of factor IXa during factor X activation 400-fold. In the absence of reaction components this stimulated was 65-fold. We established that calcium stimulated the heparin-dependent inhibition of factor IXa.  相似文献   

4.
Kinetics of coagulation factor X activation by platelet-bound factor IXa   总被引:5,自引:0,他引:5  
Thrombin-activated human platelets, in the presence of factors VIIIa and X, have specific, high-affinity (Kd approximately 0.5 nM), saturable binding sites for factor IXa that are involved in factor X activation [Ahmad, S.S., Rawala-Sheikh, R., & Walsh, P.N. (1989) J. Biol. Chem. 264, 3244-3251]. To determine the functional consequences of factor IXa binding to platelets, a detailed kinetic analysis of the effects of platelets, phospholipids, and factor VIII on factor IXa catalyzed factor X activation was done. In the absence of platelets, phospholipids, or factor VIII, the Michaelis constant (Km = 81 microM) was greater than 500-fold higher than the factor X concentration in human plasma. Unactivated platelets and thrombin-activated factor VIII, alone or in combination, had no effect on the kinetic parameters, whereas thrombin-activated platelets caused a major decrease in Km (0.39 microM) with no significant effect on kcat (0.052 min-1) and allowed factor VIIIa to decrease the Km further to a concentration (0.16 microM) near that of factor X in plasma and to increase the kcat 24,000-fold to 1240 min-1. Sonicated mixed phosphatidylserine/phosphatidylcholine vesicles (25/75, mol/mol) had kinetic effects similar to those of activated platelets. When factor IXa binding to thrombin-activated platelets and rates of factor X activation were measured simultaneously at saturating concentrations of factor X and factor VIIIa, the kcat was independent of factor IXa concentration, and the mean kcat value was 2391 min-1. The increase in catalytic efficiency (kcat/Km) in the presence of thrombin-activated platelets and factor VIIIa was (17.4 x 10(6))-fold.  相似文献   

5.
R P Link  F J Castellino 《Biochemistry》1983,22(17):4033-4041
The Vmax/Km (microM -1 min -1.) for bovine factor X activation by bovine factor IXa alpha, in the presence of sufficient [Ca2+] to saturate the initial reaction rate, was 0.007. When factor IXa beta was substituted for factor IXa alpha in this reaction, the Vmax/Km decreased to 0.001, suggesting that factor IXa alpha was a more potent catalyst under these conditions. When phospholipid (PL) vesicles (egg phosphatidylcholine/bovine brain phosphatidylserine, 4:1 w/w) were added to these same systems, at levels sufficient to saturate their effects, little change in the Vmax/Km occurred when factor IXa alpha was the enzyme. However, when factor IXa beta was employed, the Vmax/Km dramatically increased to 0.023, demonstrating that factor IXa beta responded to PL addition to a much greater extent than did factor IXa alpha. Upon addition of thrombin-activated factor VIII (factor VIIIa,t), at a suboptimal level, to the above systems, the Vmax/Km for factor X activation by factor IXa alpha/Ca2+/PL/factor VIIIa,t was increased to 1.0, whereas this parameter for factor X activation by factor IXa beta/Ca2+/PL/factor VIIIa,t under the same conditions was found to be 27.3. During these studies, it was discovered that the factor X which became activated to factor Xa during the course of reaction participated in several feedback reactions: activation of factor X, activation of factor VIII, and conversion of factor IXa alpha to factor IXa beta. All feedback reactions, which are capable of complicating the kinetic interpretation, were inhibited by performing the studies in a system which contained a rapid factor Xa inhibitor, Glu-Gly-Arg-CH2Cl, thus allowing kinetic constants to be accurately determined. The results show that while factor IXa alpha is a more efficient enzyme than factor IXa beta toward factor X activation in the absence of cofactors, the response of factor IXa beta to the reaction cofactors, PL and factor VIIIa,t, is much greater than that of factor IXa alpha.  相似文献   

6.
A murine monoclonal antibody (IgG1k, Kd approximately 10(-8) M) specific for an epitope located on the heavy chain of human factor IXa was used to study structure-function relationships of factor IX. The antibody inhibited factor IX clotting activity but did not impair activation of factor IX either by factor XIa/calcium or by factor VIIa/tissue factor/calcium. The antibody also did not impair the binding of factor IXa to antithrombin III. Moreover, the antibody did not prevent calcium and phospholipid (PL) from inhibiting the binding of factor IXa to antithrombin III. The antibody also failed to impair activation of factor VII by factor IXa/calcium/PL. Furthermore, the antibody did not interfere with the very slow activation of factor X by factor IXa/calcium/PL. In contrast, the antibody did interfere with factor X activation when reaction mixtures also contained factor VIII:Ca/von Willebrand factor. The marked acceleration of factor X activation observed in control mixtures was not observed in mixtures containing the antibody. Similar results were obtained in reaction mixtures containing the Fab portion of the antibody and factor VIII:Ca free of von Willebrand factor. In additional experiments, factor VIII:Ca/von Willebrand factor was found to inhibit the binding of the antibody to 125I-factor IXa as determined using an immunosorbent assay. Moreover, the antibody displaced factor VIII:Ca from the factor X activator complex (IXa/calcium/PL/VIII:Ca) as evidenced by an altered elution pattern on gel filtration chromatography. From these observations, we conclude that the antibody impairs the clotting activity of factor IXa through interference with its binding of factor VIII:Ca. This suggests a significant role for the heavy chain (residues of 181-415) of factor IXa in binding factor VIII:Ca.  相似文献   

7.
The published activation site sequences of bovine factors IX and X have been utilized to synthesize a number of peptides specifically designed respectively as substrates for bovine factors XIa and IXa beta. The substrates contain a fluorophore (2-aminobenzoyl group, Abz) and a quenching group (4-nitrobenzylamide, Nba) that are separated upon enzymatic hydrolysis with a resultant increase in fluorescence that was utilized to measure hydrolysis rates. Factor XIa cleaved all of the peptides bearing factor IX activation site sequences with Abz-Glu-Phe-Ser-Arg-Val-Val-Gly-Nba having the highest kcat/KM value. The kinetic behavior of factor XIa toward the synthetic peptide substrate indicates that it has a minimal extended substrate recognition site at least five residues long spanning S4 to S1' and has favorable interactions over seven subsites. The hexapeptide Abz-Glu-Phe-Ser-Arg-Val-Val-Nba was the most specific factor XIa substrate and was not hydrolyzed by factors IXa beta or Xa beta or thrombin. Factor IXa beta failed to hydrolyze any of the synthetic peptides bearing the activation site sequence of factor X. This enzyme slowly cleaved four hexa- and heptapeptide substrates with factor IX activation site sequences extending from P4 or P3 to P3'. Factor Xa beta poorly hydrolyzed all but one of the factor XIa substrates and failed to cleave any of the factor IXa beta substrates. Thrombin failed to hydrolyze any of the peptides examined while trypsin, as expected, was highly reactive and not very specific. Phospholipids had no effect on the reactivity of either factors IXa beta or Xa beta toward synthetic substrates. Both factor IXa beta and Xa beta cleaved the peptide substrates at similar rates to their natural substrates under comparable conditions. However the rates were substantially lower than optimum activation rates observed in the presence of Ca2+, phospholipids, and protein cofactors. In the future, it may be useful to investigate synthetic substrates that can bind to phospholipid vesicles in the same manner as the natural substrates for factors IXa beta and Xa beta.  相似文献   

8.
Pathways in the activation of human coagulation factor X.   总被引:4,自引:3,他引:1       下载免费PDF全文
Purified human Factor X (apparent mol.wt. 72000), which consists of two polypeptide chains (mol.wt. 55000 and 19000), was activated by both Russell's-viper venom and the purified physiological activators (Factor VII/tissue factor and Factor IXa/Factor VIII). They all convert Factor X to catalytically active Factor Xa (mol.wt. 54000) by cleaving the heavy chain at a site on the N-terminal region. In the presence of Ca2+ and phospholipid, the Factor Xa formed catalyses (a) the cleavage of a small peptide (mol.wt. 4000) from the C-terminal region of the heavy chain of Factor Xa, resulting in a second active form (mol.wt. 50000), and (b) the cleavage of a peptide containing the active-site serine residue (mol.wt. 13000) from the C-terminal region of the heavy chain of Factor X, resulting in an inactivatable component (mol.wt. 59000). A nomenclature for the various products is proposed.  相似文献   

9.
10.
Zymogen factor IX potentiates factor IXa-catalyzed factor X activation   总被引:3,自引:0,他引:3  
London FS  Walsh PN 《Biochemistry》2000,39(32):9850-9858
Intrinsic factor X activation is accelerated >10(7)-fold by assembly of the entire complex on the activated platelet surface. We have now observed that increasing the concentration of zymogen factor IX to physiologic levels ( approximately 100 nM) potentiates factor IXa-catalyzed activation of factor X on both activated platelets and on negatively charged phospholipid vesicles. In the presence and absence of factor VIIIa, factor IX (100 nM) lowered the K(d,appFIXa) approximately 4-fold on platelets and 2-10-fold on lipid vesicles. Treatment of two factor IX preparations with active-site inhibitors did not affect these observations. Autoradiographs of PAGE-separated reactions containing either (125)I-labeled factor IX or (125)I-labeled factor X showed that the increased factor X activation was not due to factor Xa-mediated feedback activation of factor IX and that there was increased cleavage of factor X heavy chain in the presence of factor IX in comparison with control reactions but only in the presence of both the enzyme and the surface. Since plasma concentrations of prothrombin, factor VII, protein C, or protein S did not by themselves potentiate factor Xa generation and did not interfere with the potentiation of the reaction of factor IX, the effect is specific for factor IX and is not attributable to the Gla domain of all vitamin K-dependent proteins. These observations indicate that under physiologic conditions, plasma levels of the zymogen factor IX specifically increase the affinity of factor IXa for the intrinsic factor X activation complex.  相似文献   

11.
Factor VIII circulates as a noncovalent heterodimer consisting of a heavy chain (HC, contiguous A1-A2-B domains) and light chain (LC). Cleavage of HC at the A1-A2 and A2-B junctions generates the A1 and A2 subunits of factor VIIIa. Although the isolated A2 subunit stimulates factor IXa-catalyzed generation of factor Xa by approximately 100-fold, the isolated HC, free from the LC, showed no effect in this assay. However, extended reaction of HC with factors IXa and X resulted in an increase in factor IXa activity because of conversion of the HC to A1 and A2 subunits by factor Xa. HC cleavage by thrombin or factor Xa yielded similar products, although factor Xa cleaved at a rate of approximately 1% observed for thrombin. HC showed little inhibition of the A2 subunit-dependent stimulation of factor IXa activity, suggesting that factor IXa-interactive sites are masked in the A2 domain of HC. Furthermore, HC showed no effect on the fluorescence anisotropy of fluorescein-Phe-Phe-Arg-factor IXa in the presence of factor X, whereas thrombin-cleaved HC yielded a marked increase in this parameter. These results indicate that HC cleavage by either thrombin or factor Xa is essential to expose the factor IXa-interactive site(s) in the A2 subunit required to modulate protease activity.  相似文献   

12.
Ahmad SS  Walsh PN 《Biochemistry》2002,41(37):11269-11276
The assembly of the factor X activating complex on the platelet surface requires the occupancy of three receptors: (1) enzyme factor IXa, (2) cofactor factor VIII(a), and (3) substrate factor X. To further evaluate this three-receptor model, simultaneous binding isotherms of (125)I-factor X and (131)I-factor VIII(a) to activated platelets were determined as a function of time and also as a function of the concentrations of both ligands in the presence of active site-inhibited factor IXa (45 nM) and 5 mM CaCl(2). In the presence of active site-inhibited factor IXa and factor VIIIa there are two independent factor X binding sites: (1) low affinity, high capacity (approximately 9000 sites/platelet; K(d) approximately 380 nM) and (2) low capacity, high affinity (1700 sites/platelet; K(d) approximately 30 nM). A single specific and selective factor X binding site was expressed (1200 sites/platelet; K(d) approximately 9 nM) when the shared factor X/factor II site was blocked by excess factor II (4 microM). In the presence of active site-inhibited factor IXa (4 nM) and factor II (4 microM), factor X binds to 3-fold more platelet sites than procofactor VIII with relatively low affinity (K(d) approximately 250 nM). The activation of procofactor VIII to factor VIIIa increases the affinity of binding to platelets of both factor VIIIa ( approximately 4-fold to K(d) approximately 0.8-1.5 nM) and factor X ( approximately 25-50-fold to K(d) approximately 5-9 nM). In the presence of excess zymogen factor IX, which blocks the shared factor IX/factor IXa binding site, the substrate, factor X, and the active cofactor, factor VIIIa, form a 1:1 stoichiometric complex. These coordinate binding studies support the conclusion that factor X initially binds to a high-capacity, low-affinity platelet binding site shared with prothrombin, which then presents factor X to a specific high-affinity site consisting of factor VIIIa bound to a high-affinity, low-capacity receptor on activated platelets.  相似文献   

13.
Previous studies have demonstrated a Factor IX and IXa binding site on the endothelial cell surface for which both the zymogen and enzyme compete with equal affinity. In this report, we demonstrate that the affinity of Factor IXa, but not Factor IX, for the cell surface is increased in the presence of both Factors VIII and X. When Factor Xa formation was studied in the presence of saturating concentrations of Factors VIII and X, the half-maximal rate was observed at a Factor IXa concentration of 151 +/- 12 pM. Active site-blocked Factor IXa, 5-dimethylaminonaphthalene-1-sulfonyl-Glu-Gly-Arg-Factor IXa, was a more effective inhibitor of Factor X activation (Ki = 124 pM) than was Factor IX (Ki = 3.0 nM). Radioligand binding studies carried out in the presence of Factors VIII and X confirmed the presence of a selective endothelial cell Factor IXa binding site with Kd = 127 +/- 27 pM. In contrast, when Factor IXa binding was studied in the absence of other coagulation factors, or in the presence of Factor VIII (thrombin-activated or unactivated) alone, this new high affinity site was not observed. Competitive binding studies indicated that Factor IXa was 12 times more effective as an inhibitor of Factor IX-endothelial cell binding in the presence of Factors VIII and X. Consistent with the increased affinity of Factor IXa binding in the presence of factors VIII and X, cell-associated Factor IXa coagulant activity decayed 7 times more slowly in the presence of these coagulation factors. These results demonstrate selective Factor IXa-endothelial cell binding in the presence of Factors VIII and X, suggesting this interaction could be a physiologic occurrence.  相似文献   

14.
The basis of the specificity of human coagulation factor Xa has been probed with a reagent that reacts with nucleophiles, N-succinimidylpropionate. At pH 8.0 and 0.25 mM N-succinimidylpropionate, 0.4 microM factor Xa lost approx. 90% of its activity toward prothrombin in 4 min. The decay was first-order, k = 0.64 min-1, which increased to 0.98 min-1 in 1 mM Ca2+, and the dependence of k upon pH was consistent with primary amines being the target. The rate of modification was unaffected by the presence of a tetrapeptide substrate during modification; likewise, activity toward a tripeptide p-nitroanilide was unaltered during exposure of factor Xa to N-succinimidylpropionate with or without Ca2+. In addition, inhibition by antithrombin III was retained with a somewhat enhanced rate after modification; however, the acceleration of this by heparin was significantly less. Kinetic determination of the number of residues modified gave a reaction order of 2.0, while reaction with N-succinimidyl[3H]propionate yielded labeled factor Xa containing 1.0 mol N-succinimidylpropionate/mol factor Xa and 50% normal clotting activity, or 2.0 mol N-succinimidylpropionate/mol and 1% activity, respectively. Thus, one nucleophilic group is required for the reaction of factor Xa with prothrombin but not for the hydrolysis of peptides or recognition of antithrombin III. The decay of clotting activity of the factor X zymogen in N-succinimidylpropionate was much slower though still Ca2+-dependent. Conversely, the reaction of a related compound--N-succinimidyl(4-hydroxyphenyl)propionate or Bolton-Hunter reagent--with factor Xa broadly resembled that of N-succinimidylpropionate but the decay curves indicated more complex kinetics. Therefore, the target groups vary in their accessibility to modification according to the structural characteristics of both the protein and the reagent.  相似文献   

15.
Molecular recognition in the activation of human blood coagulation factor X   总被引:3,自引:0,他引:3  
Factor X can be activated by the extrinsic activation complex (factor VIIa:tissue factor), the intrinsic activation complex (factor IXa:factor VIIIa) and by an enzyme from Russell's viper venom (RVV-X). To identify the regions on the surface of factor X that mediate its association with these three activators, we have prepared 21 synthetic peptides representing 65% of the primary structure of factor X. Only 3 of the 21 peptides inhibited the rate of factor X activation, indicating the regions represented by these three peptides are involved in factor X association. Using purified components, the rate of factor Xa formation was inhibited in a dose-dependent manner by these three peptides with the same relative potency of inhibition in each of the activation systems. The observed relative potencies were: peptide 267-283 greater than or equal to peptide 284-303 greater than peptide 417-431. Kinetic analyses indicated that the three peptides inhibited factor X activation in a non-competitive manner, and in mixed inhibitor assays the peptides were shown to be mutually exclusive of one another. In coagulation-based assays, the potency of inhibition by each peptide was decreased. However, in Russell's viper venom-X-initiated assays peptide 417-431 was the best inhibitor. Fab fragments of antibodies raised to these peptides and affinity purified on factor X-agarose columns inhibited both the purified and coagulation-based assays in a dose-dependent manner. Using the x-ray crystal structure of chymotrypsinogen as a model, these three peptides were found to be located spatially close to one another on the surface of factor X and opposite to the region where factor X is cleaved for activation. These data are consistent with a model in which the three activators combine with factor X through a recognition site composed of multiple loci that is distal to the potential cleavage site. This interaction aligns the active sites of these three enzymes in the correct orientation to cleave factor X at the same arginyl-isoleucyl bond.  相似文献   

16.
Comparative interactions of factor IX and factor IXa with human platelets   总被引:10,自引:0,他引:10  
Both factor IX and factor IXa were bound to gel filtered platelets in the presence of CaCl2 (2-20 mM) and human alpha-thrombin (0.06-0.2 units/ml) with maximal binding occurring in 10-20 min at 37 degrees C, and rapid reversibility was observed when unlabeled ligands were added in 100-fold molar excess. Competition studies with various coagulation proteins revealed that neither factor XI nor high molecular weight kininogen, at 300-fold molar excess, could compete with 125I-labeled factor IXa for binding sites on thrombin-activated platelets, whereas prothrombin and factor X, in 450-fold molar excess, could displace approximately 15 and 35%, respectively, of bound factor IXa in the absence of added factor VIII. Analysis of saturation binding data in the presence of CaCl2 and thrombin without factors VIII and X indicated the presence of 306 (+/- 57) binding sites per platelet for factor IX (Kd(app) = 2.68 +/- 0.25 nM) and 515 (+/- 39) sites per platelet for factor IXa (Kd = 2.57 +/- 0.14 nM). In the presence of thrombin-activated factor VIII (1-5 units/ml) and factor X (0.15-1.5 microM), the number of sites for factor IX was 316 (+/- 50) with Kd = 2.44 (+/- 0.30) nM and for factor IXa 551 (+/- 48) sites per platelet (Kd = 0.56 +/- 0.05 nM). Studies of competition for bound factor IXa by excess unlabeled factor IX or factor IXa, and direct 125I-labeled factor IXa binding studies in the presence of large molar excesses of factor IX, confirmed the conclusion from these studies that factor IX and factor IXa share approximately 300 low-affinity binding sites per thrombin-activated platelet in the presence of Ca2+ and in the absence of factor VIII and factor X, with an additional 200-250 sites for factor IXa with Kd(app) similar to that for factor IX. The presence of factor VIII and factor X increases by 5-fold the affinity of receptors on thrombin-activated platelets for factor IXa that participate in factor X activation.  相似文献   

17.
The three-dimensional structure of activated factor IX comprises multiple contacts between the two epidermal growth factor (EGF)-like domains. One of these is a salt bridge between Glu(78) and Arg(94), which is essential for binding of factor IXa to its cofactor factor VIII and for factor VIII-dependent factor X activation (Christophe, O. D., Lenting, P. J., Kolkman, J. A., Brownlee, G. G., and Mertens, K. (1998) J. Biol. Chem. 273, 222-227). We now addressed the putative hydrophobic contact at the interface between the EGF-like domains. Recombinant factor IX chimeras were constructed in which hydrophobic regions Phe(75)-Phe(77) and Lys(106)-Val(108) were replaced by the corresponding sites of factor X and factor VII. Activated factor IX/factor X chimeras were indistinguishable from normal factor IXa with respect to factor IXa enzymatic activity. In contrast, factor IXa(75-77)/factor VII displayed approximately 2-fold increased factor X activation in the presence of factor VIII, suggesting that residues 75-77 contribute to cofactor-dependent factor X activation. Activation of factor X by factor IX(106-108)/factor VII was strongly decreased, both in the absence and presence of factor VIII. Activity could be restored by simultaneous substitution of the hydrophobic sites in both EGF-like domains for factor VII residues. These data suggest that factor IXa enzymatic activity requires hydrophobic contact between the two EGF-like domains.  相似文献   

18.
The assembly of proteins of the intrinsic activation complex has been partially elucidated. In the present study we examine the association of gamma-carboxylated serine proteinase zymogens factors IX and X, and their proteolytically activated counterparts factors IXa and Xa to unilamellar lipid vesicles of defined composition using three types of physical measurement. Utilizing relative light scatter to estimate the dissociation constants for binding in the presence of calcium ions, it appears that factor IXa (0.93 +/- 0.37 microM) may preferentially associate with phospholipids relative to factor IX (0.35 +/- 0.08 microM). In contrast, factor X (0.34 +/- 0.14 microM), the substrate for factor IXa, appears to bind to phospholipid with a higher affinity than factor Xa (0.58 +/- 0.13 microM). These observations are compatible with the hypothesized dynamics where the forward 'traffic' is facilitated by favoring the association of factor IXa with factor X. The dissociation constants were estimated by molecular exclusion chromatography (1.1 - 2.5 microM) and do not reflect these relative and ordered differences in association with lipid vesicles. Quasi-elastic light scatter analyses indicate that each protein appears to saturate the same vesicle surface, consistent with competition for similar surface lipids, although the molecular shell formed by factor Xa (36 A) is smaller, suggesting that it has a different packing on the phospholipid surface than the other proteins (64-79 A). The pattern of preferential affinities for phospholipid is consistent with a kinetically functional forward traffic through the reaction precursors to products, and suggests that these preferential affinities may assist in the ordering of the four proteins in the intrinsic activation complex.  相似文献   

19.
Factor IX is a vitamin K-dependent zymogen of a serine protease. The NH2-terminal half of the molecule consists of a Ca(2+)-binding gamma-carboxyglutamic acid (Gla)-containing module and two modules homologous to the epidermal growth factor (EGF) precursor. To elucidate the role of these non-catalytic modules of factor IXa beta in factor X activation, we have isolated and characterized fragments of bovine factor IX, containing one or both of the EGF-like modules as well as these modules linked to the Gla module. The fragments were used as inhibitors of factor IXa beta-mediated factor X activation in a plasma clotting system and in systems with purified components of the Xase complex. Fragments consisting of either the two EGF-like modules of factor IX linked together or the NH2-terminal EGF-like module alone were found to inhibit factor Xa generation both in the presence and absence of the cofactor, factor VIIIa. Moreover, a fragment consisting of the corresponding modules of factor X had a similar effect. We therefore propose that factor IXa beta and factor X interact directly through their EGF-like modules on or in the vicinity of a phospholipid surface. We have also found that the isolated Gla module of factor IX inhibits the formation of factor Xa both in the presence and absence of phospholipid but not in the absence of factor VIIIa. Our results are compatible with a model of the Xase complex, in which both the serine protease part and the Gla module of factor IXa beta interact with factor VIIIa.  相似文献   

20.
Tissue kallikrein and factor Xa were found to activate tissue plasminogen activator (t-PA) at a rate comparable with that of plasmin. During the activation reaction, the single-chain molecule was converted into a two-chain form. A slight t-PA activating activity was also found in plasma kallikrein. Other activated coagulation factors, factor XIIa, factor XIa, factor IXa, factor VIIa, thrombin and activated protein C had no effect on t-PA activation. t-PA was also activated by a tissue kallikrein-like enzyme that was isolated from the culture medium of melanoma cells. These results indicate that tissue kallikrein and factor Xa may participate in the extrinsic pathway of human fibrinolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号