首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
转基因抗虫棉是中国商业化应用最成功的转基因作物,已有许多研究对转基因棉花种植的成本效益和农户生产决策的影响因素进行了深入分析,但对其具体推广过程缺乏足够了解。通过小组访谈和创新树的分析方法,以转基因抗虫棉为例,对转基因生物技术在我国的推广和传播途径开展了研究。研究发现,种业公司转基因作物种子的生产能力直接影响转基因作物的初始规模,来自政府研究机构和种业公司的技术推广者在转基因生物技术的扩散过程中都起着重要作用,公共农技推广服务对于宣传相关信息和知识尤为重要,社会资本也有助于转基因抗虫棉在中国的快速传播和采用。研究结论对推进我国公共农技推广体系改革、完善多元社会化服务主体协作及生物技术研发具有重要启示作用。  相似文献   

2.
棉蚜抗药性机理研究进展   总被引:8,自引:0,他引:8  
艾颖  邱星辉  何凤琴 《昆虫知识》2003,40(5):385-391
棉蚜的抗药性涉及到代谢酶活力的提高、靶标部位的不敏感以及表皮穿透作用的降低。该文重点概述了棉蚜代谢抗性和靶标抗性方面的研究进展 ;介绍了棉蚜抗性中存在的交互抗性、负交互抗性 ,讨论了抗性稳定性以及寄主植物和转基因棉对棉蚜抗药性的影响。  相似文献   

3.
基因工程植物的安全性问题   总被引:8,自引:1,他引:8  
转基因植物的研究进展很迅速,但基因工程植物是否安全一直争论不休,主要表现在转基因食品的安全性及生态安全性问题上.转基因食品的安全性涉及这些食品的过敏性、毒性以及抗生素标记基因的安全性几个方面.转基因植物的生态安全性包括基因漂流、是否能诱发昆虫产生Bt抗性和对生物多样性的影响等.本文针对这些问题,对转基因植物潜在危害以及国际上现有的评价作简要综述.  相似文献   

4.
Considerable effort has been expended to determine if crops genetically engineered to produce Bacillus thuringiensis (Bt) toxins harm non‐target arthropods. However, if Bt crops kill target pests and thereby reduce insecticide use, this could benefit some non‐target arthropods. We analyzed data from 21 commercial cotton fields in Arizona to test the effects of Bt cotton on insecticide use and abundance of two non‐target arthropods, the generalist predators Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) and Orius tristicolor (White) (Heteroptera: Anthocoridae). The number of insecticide sprays was more than double for non‐Bt cotton compared with Bt cotton that produced Cry1Ac. The abundance of both predators was negatively associated with the number of insecticide sprays, although significantly so for only one of two sampling periods for each species tested. With the effects of insecticides statistically removed, field type (Bt or non‐Bt cotton) did not affect the abundance of either predator. Accordingly, without adjusting for the effects of insecticide sprays, the abundance of C. carnea was higher in Bt cotton fields than in non‐Bt cotton fields, but significantly so during only one of two sampling periods. The abundance of O. tristicolor did not differ between field types, even without adjusting for effects of insecticide sprays. The results indicate that Bt crops can affect insecticide use, which in turn can affect the relative abundance of non‐target arthropods in Bt and non‐Bt fields. Thus, environmental impact assessment should incorporate analysis of the effects of transgenic crops on management practices, as well as evaluation of the direct effects of such crops.  相似文献   

5.
Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached.  相似文献   

6.
Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM) crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their attitudes. Data were collected using interview surveys of consumer households, farmer households and scientists. A discrete choice approach was used to elicit the purchase intentions of the respondents. Two separate probit models were developed to examine the effect of various factors on the choices of the respondents. Bt cotton farmers had a very positive attitude because Bt cotton provided them with significant economic benefits. Chinese consumers from developed regions had a higher acceptance and willingness to pay for GM foods than consumers in other regions. The positive attitude toward GM foods by the scientific community will help to promote biotechnology in China in the future. Our survey emphasized that educational efforts made by government officials, the media and scientists can facilitate the acceptance of GM technology in China. Further educational efforts will be critical for influencing consumer attitudes and decisions of government agencies in the future. More effective educational efforts by government agencies and public media concerning the scientific facts and safety of GM foods would enhance the acceptance of GM crops in China.  相似文献   

7.
Agricultural biotechnology holds much potential to contribute towards crop productivity gains and crop improvement for smallholder farmers in developing countries. Over 14 million smallholder farmers are already benefiting from biotech crops such as cotton and maize in China, India and other Asian, African and Central/South American countries. Molecular breeding can accelerate crop improvement timescales and enable greater use of diversity of gene sources. Little impact has been realized to date with fruits and vegetables because of development timescales for molecular breeding and development and regulatory costs and political considerations facing biotech crops in many countries. Constraints to the development and adoption of technology-based solutions to reduce yield gaps need to be overcome. Full integration with broader commercial considerations such as farmer access to seed distribution systems that facilitate dissemination of improved varieties and functioning markets for produce are critical for the benefits of agricultural biotechnology to be fully realized by smallholders. Public-private partnerships offer opportunities to catalyze new approaches and investment while accelerating integrated research and development and commercial supply chain-based solutions.  相似文献   

8.
9.
棉花数量性状基因定位研究进展   总被引:2,自引:0,他引:2  
棉花的许多重要性状,包括产量、纤维品质、株型、抗病抗逆性、生理生化等都是数量性状,受遗传和环境因子的共同作用。近年来,随着分子生物学技术的进步,棉花基因组研究得到迅速发展,为棉花数量性状基因(quantitative trait locus,QTL)定位奠定了坚实的基础。概述了近十几年来棉花QTL定位研究及分子标记辅助选择的进展,结合研究实践指出了棉花QTL定位及标记辅助选择存在的问题,并对其发展方向做出了初步探讨。  相似文献   

10.
Chemically regulated gene expression in plants   总被引:16,自引:0,他引:16  
Chemically inducible systems that activate or inactivate gene expression have many potential applications in the determination of gene function and in plant biotechnology. The precise timing and control of gene expression are important aspects of chemically inducible systems. Several systems have been developed and used to analyze gene function, marker-free plant transformation, site-specific DNA excision, activation tagging, conditional genetic complementation, and restoration of male fertility. Chemicals that are used to regulate transgene expression include the antibiotic tetracycline, the steroids dexamethasone and estradiol, copper, ethanol, the inducer of pathogen-related proteins benzothiadiazol, herbicide safeners, and the insecticide methoxyfenozide. Systems that are suitable for field application are particularly useful for experimental systems and have potential applications in biotechnology.  相似文献   

11.
Bollgard cotton is the trademark given to a number of varieties of cotton bio-engineered to produce an insecticidal protein from Bacillus thuringiensis (Bt). When produced by the modified cotton plants, this protein controls certain lepidopterous cotton insect pests. Commercially available since 1996, these cotton varieties are purchased under a license agreement in which the growers pay a fee and agree to abide by the terms, which include a 1-year license to use the technology and agreement to participate in an insect resistance management program. Today, Bollgard cotton is grown on more than one-third of all cotton acreage in the USA. This product has reduced cotton production costs and insecticide use by providing an effective alternative to chemical insecticides for the control of tobacco budworm, Heliothis virescens; cotton bollworm, Helicoverpa zea; and pink bollworm, Pectinophora gossypiella. The specificity and safety profile of the Bt protein produced in planta in cotton was maintained. It has retained its selectivity for lepidopterous insects and lacks the characteristics found in potential allergenic proteins. Fiber quality, the agronomic characteristics of the plant and seed composition remain unchanged. New cotton technology is being developed to provide improved insect control and a wider spectrum of activity. These future products could further reduce insecticide use in the production of cotton, while maintaining the high level of safety and reliability that has been demonstrated by five seasons of Bollgard cotton use.  相似文献   

12.
Despite the widespread adoption of Bt cotton, farmers still spray excessive pesticides in their cotton fields. In contrast to scientists who always use high quality seeds in the laboratory and/or experimental fields, farmers may plant low quality seeds with a low expression of Bt toxin. How does the expression of Bt toxin influence farmers' pesticide use? On the basis of a plot‐level survey and laboratory test data, this study shows that pesticide use on one cotton plot is influenced not only by the expression of Bt crops in this plot, but also by the average expression in the village in the early stage of the cotton growing season. In other words, high expression of Bt toxin benefits not only the farmers who plant the varieties but also all the other villagers.  相似文献   

13.
华北棉区主要害虫抗药性监测与治理技术示范   总被引:1,自引:0,他引:1  
张帅  马艳  闵红  于晓庆  李娜  芮昌辉  高希武 《昆虫学报》2016,59(11):1238-1245
【目的】华北地区转基因Bt棉大面积种植后,刺吸式口器害虫已成为棉花主要害虫。本研究旨在监测明确棉花主要害虫对田间常用杀虫剂抗性水平变化,以指导田间合理用药。【方法】2013-2015年分别采用叶片药膜法和点滴法系统监测了河北省邱县、山东省滨州市、河南省西华县棉铃虫Helicoverpa armigera、棉蚜Aphis gossypii、绿盲蝽Apolygus lucorum对常用杀虫药剂的抗性动态变化情况。【结果】棉铃虫对辛硫磷、高效氯氟氰菊酯抗性呈上升趋势,抗性倍数都在20倍以上,对甲氨基阿维菌素苯甲酸盐从敏感状态转为中等水平抗性,抗性倍数在10倍以上。棉蚜对杀虫剂抗性水平都比较高,特别是对氧化乐果、高效氯氰菊酯、吡虫啉都已产生了高水平抗性,抗性倍数都在100倍以上。绿盲蝽对吡虫啉从敏感状态转为中等水平抗性,抗性倍数在10倍以上,对马拉硫磷、灭多威等药剂抗性倍数还维持在10倍以下,对高效氯氟氰菊酯只监测到滨州种群产生了中等水平的抗性,抗性倍数达到了95倍。在明确棉花害虫抗药性水平的基础上,对山东滨州棉花害虫实施了以轮换用药为主的抗性治理示范,示范区比农户自防对照区减少3次用药,增加棉花产量7.53%,节本增收109.16元,取得了较好的示范效果和经济效益。【结论】当前华北棉区主要害虫抗性水平上升,急需开展以轮换用药为主的抗性治理措施。  相似文献   

14.
Genetically modified (GM) cotton altered for insect and herbicide resistance released into commercial production in 1996 to 1997 now accounts for the lion's share of cotton acreage in the U.S. The rapid increase in transgenic cotton acreage in such a short period of time attests to the overall success of agricultural biotechnology. Grower satisfaction with transgenic cotton is largely due to several significant benefits, such as lower production costs, streamlined yet flexible management, and a reduced impact on the environment. This review article provides an overview of what has been accomplished thus far, as well as what improved germplasm may lurk on the horizon. A critical assessment of the gene delivery systems in cotton and possible targets for improvement is presented. The performance of the first generation of transgenic cotton plants engineered for insect, disease, or herbicide resistance is evaluated from the perspective of the benefits, the limitations that impact field performance, and management strategies. A few traits that hold future promise for increasing fiber productivity, enhancing and/or increasing the novelty of cotton-based products for the consumer, and improving human health and well-being are presented. Above all, cotton biotechnology offers to greatly enhance breeding programs by introducing novel traits that have eluded more traditional plant improvement methods and therefore will likely play an increasingly important role in the genetic improvement of cotton.  相似文献   

15.
近年来,转基因棉花种植面积在多个国家得到了快速增长。为深入研究转基因抗虫棉花的技术体系和知识产权保护状况,现以棉花转化体MON531为例研究跨国生物公司的知识产权保护策略。结果显示,目前MON531转化体涉及3件处于有效保护期限内的专利,并在多个国家受到保护,实现了从功能基因及调控元件到最终商业化品种的全方位有效保护。申请人还通过申请植物品种权对下游的品种进行保护,美国有19件品种获得授权,在中国仅有1件相关申请处于审查中。对棉花转化体MON531技术体系的知识产权保护策略的研究,可以为我国研发转基因作物并采取知识产权保护提供有利的借鉴。  相似文献   

16.
For many key agricultural pests, successful management of insecticide resistance depends not only on modifying the way that insecticides are deployed, but also on reducing the total number of treatments applied. Both approaches benefit from a knowledge of the biological characteristics of pests that promote or may retard the development of resistance. For the whitefly Bemisia tabaci (Gennadius), these factors include a haplodiploid breeding system that encourages the rapid selection and fixation of resistance genes, its breeding cycle on a succession of treated or untreated hosts, and its occurrence on and dispersal from high-value crops in greenhouses and glasshouses. These factors, in conjunction with often intensive insecticide use, have led to severe and widespread resistance that now affects several novel as well as conventional control agents. Resistance-management strategies implemented on cotton in Israel, and subsequently in south-western USA, have nonetheless so far succeeded in arresting the resistance treadmill in B. tabaci through a combination of increased chemical diversity, voluntary or mandatory restrictions on the use of key insecticides, and careful integration of chemical control with other pest-management options. In both countries, the most significant achievement has been a dramatic reduction in the number of insecticide treatments applied against whiteflies on cotton, increasing the prospect of sustained use of existing and future insecticides.  相似文献   

17.
In view of the enormous challenge and pressure on farmers to feed 9 billion plus people and billions of animals who are going to be living in our planet in 2050, new technologies must be invented, assessed and adapted. Farmer welfare and provision of resources required for their work is of paramount importance. India has benefited from Bt cotton technology and will certainly benefit from other biotech crops that have been carefully developed and assessed for consumption and environmental safety.  相似文献   

18.
Bollworm, Helicoverpa zea (Boddie), larvae are commonly observed feeding in genetically engineered Bollgard cotton. Although no information is currently available characterizing the levels of injury bollworms cause, aproximately 25% of the Bollgard acreage in the United States receives at least one insecticide application annually targeting bollworm populations. Studies were conducted to determine the levels of fruiting form injury that can occur from bollworm larvae feeding on white flowers of two types of genetically engineered cotton. The two types of genetically engineered cotton included the original Bollgard that produces one protein (Cry1Ac) from Bacillus thuringiensis variety kurstaki Berliner and Bollgard II that produces two proteins (Cry1Ac + Cry2Ab) from B. thuringiensis kurstaki. In one study, individual larvae (24 +/- 6 h old) were placed in first position white flowers of Deltapine 5415 (non-Bollgard) and Deltapine NuCOTN 33B (Bollgard). Larval infestations were made on 50 plants for each of 5 d during 2000 and 2001. Each plant was visually examined at 3 d and every 2 d thereafter, until larvae were no longer recovered. Larvae injured a total of 46.6 fruiting forms per 50 plants on non-Bollgard cotton, compared with only 18.9 fruiting forms per 50 plants on Bollgard cotton. Mean larval injury per insect was 4.3 fruiting forms on non-Bollgard cotton compared with 2.7 fruiting forms on Bollgard cotton. In a second study, individual larvae (24 +/- 6 h old) were placed in first position white flowers of Deltapine 50 (non-Bollgard), Deltapine 50B (Bollgard), and an experimental Bollgard II line. Larval infestations were made on 10 plants per day for each of six consecutive days during 2001. Larvae injured a total of 25.0 fruiting forms per 10 plants on non-Bollgard, 11.5 on Bollgard, and 6.4 on Bollgard II cottons. Mean larval injury per insect was 6.6 fruiting forms on non-Bollgard, 3.5 on Bollgard, and 0.8 on Bollgard II cottons. These data indicate that supplemental insecticide applications may be necessary to prevent yield losses on Bollgard cotton. In contrast, injury to Bollgard II cotton was minimal and may not require additional insecticide applications for bollworms.  相似文献   

19.
1 前 言稳定性是生物种群、群落与生态系统研究的重要内容之一。稳定性是预测和调控一个系统的基础。棉田生态系统稳定性的研究对于指导棉田生态系统的优化管理 ,对于棉田系统生产力的稳定提高和持续发展具有非常重要的意义。然而 ,生态学的稳定性研究在概念、度量指标 (或称研究方法 )上至今仍未统一[1,2 ],因而研究结果也不一致。Webster等[3]认为 ,生态学家关心的不是生态学的系统是否稳定 ,而是系统有多么稳定 ,即稳定的相对程度 ,并提出了绝对稳定性概念(判断是否稳定 )和相对稳定性概念 (判断相对稳定程度 )。其相对稳定性意…  相似文献   

20.
Field populations of the cotton aphid, Aphis gossypii Glover, are structured into geographically widespread host races. In the cotton-producing regions of West and Central Africa (WCA), two genotypes have been repeatedly detected within the cotton host race, one of which (Burk1) is prevalent (>90%) and resistant to several insecticides, as opposed to the second one (Ivo). Here, we conducted whole plant and field cage experiments to test hypotheses for such low genetic diversity, including selection from insecticide treatments, interclonal competition and adaptation to host plant, or climatic conditions. To assess the genetic diversity of immigrant aphids, alatae were trapped and collected on cotton and relay host plants (okra and roselle) in the early cropping season. Individuals were genotyped at eight specific microsatellite loci and characterized by a multilocus genotype (MLG). When independently transferred from cotton (Gossypium hirustum L.) leaf discs to whole plants (G. hirsutum and G. arboreum, roselle and okra), Ivo and Burk1 performed equally well. When concurrently transferred from cotton leaf discs to the same plant species, Ivo performed better than Burk1, indicating that competition favoured Ivo. This was also the case on G. hirsutum growing outdoors. Conversely, Burk1 prevailed when cotton plants were sprayed with insecticides. In experiments where aphids were allowed to move to neighbouring plants, Burk1 was better represented than Ivo on low-populated plants, suggesting that dispersal may be a way to avoid competition on crowded plants. Most cotton aphids collected on cotton or relay host plants in the early cropping season were Burk1 (>90%), indicating high dispersal ability and, probably reflecting high frequency on host plants from which they dispersed. In the agricultural landscape of WCA, the use of broad-range insecticides on both cotton and relay host plants has led to the prevalence of one genotype of A. gossypii resistant to different classes of insecticides. Deployment of widespread and integrated pest management strategies are needed to restore cotton aphid control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号