首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. In a wind-field experimentally shifted in direction by 35d?, flying male Grapholita molesta (Busck) zigzagging upwind either maintained contact with a pheromone plume and followed it across during the shift or lost it and commenced casting at c. 90d? across the shifting windline to locate it eventually in its new position. Males accomplished both of these results by integrating the previously described systems of optomotor anemotaxis and self-steered counterturning, but with faster reaction-times to pheromone on and off than heretofore calculated for this species. We found no evidence that males following the plume across used chemotaxis as proposed for another species, Rather, the sawtoothed-shaped tracks were a result of the anemotactic and counterturning systems responding rapidly and reiteratively to each loss and gain of pheromone along the plume in the shifting wind. The response to an increase or decrease in pheromone concentration by males was to change their course angle to more upwind or more crosswind, respectively, on the very first reversal (within c. 0.15 s) after the concentration changed. Because males adjusted their airspeeds more slowly to changes in concentration, the groundspeeds along the more upwind-orientated legs were lower than those along cross-wind legs, contributing to the sawtoothed shape of tracks of plume-followers. The self-steered counterturning programme also reacted quickly to concentration changes, the reversal intervals tending to be shorter following each contact with pheromone than after each excursion into cleaner wind. Following casting after losing the plume, males relocating the pheromone plume exhibited an upwind ‘surge’ of narrow zigzagging flight because on the first leg in the plume they steered a course more directly upwind than on the previous leg and increased the frequency of counterturning to its highest value while maintaining the relatively high airspeed acquired while casting.  相似文献   

2.
Abstract Lymantria dispar L. males flying upwind in a pheromone plume in a forest were video-recorded at 2.5, 10 and 20 m from the source of pheromone. Males flew slower and steered more across the wind as they approached the source. In concert, their ground speed decreased and track angles increased. In contrast to these changes, their drift angles were fairly constant and the transverse component of image flow, above and/or below the moths eyes, showed almost no change. The inter-turn duration (time between sequential turns), a temporal aspect of the male flight manoeuvres, showed a consistent but relatively small increase as the distance from the source increased. The flight tracks narrowed as the males approached close (2.5 m) to the source. Because of unpredicted correlations between physical variables (i.e. temperature, wind velocity) and the distance from the source, we used principal components analysis to generate a set of completely independent variables. Greater than 90% of the variability in the data could be explained by four principal factors which corresponded well with known relationships in the flight manoeuvres. All four of these factors showed a significant regression against distance to the source. Although uncontrolled factors such as temperature and wind velocity may have contributed to changes in flight behaviour, recent data indicate that, in addition to concentration, certain temporal and spatial characteristics (i.e. burst period, burst return period) of plumes in wind vary systematically with distance from the source. We propose that L.dispar males might adjust their flight manoeuvres in response to these changes.  相似文献   

3.
Abstract. The pheromone-modulated upwind flight tracks of Grapholita molesta (Busck) males were video recorded as they approached a point-source of pheromone in a wind tunnel. The field of view of the video recording was divided longitudinally into 33 cm sections and the flight behaviour of the males in these sections was measured and compared as they approached from 233 cm to 50 cm downwind of the pheromone source. As the males approached the source, their mean ground speeds decreased. The mean values of their track angles increased with respect to due upwind (0), indicating movement more across the wind. These changes resulted mainly from the males decreasing their air speeds as they progressed up the plume toward the source. They did not change the average direction of their steering (course angle). Thus, the increase in track angles resulted from the males allowing themselves to drift more in the wind as they approached the odour source. The males also increased their average rate of counterturning as they approached the source. The net result of all these behavioural changes was a track that slowed and grew narrower, giving the impression that the males were 'homing-in' on the pheromone source as they approached. Causes of these systematic changes in behaviour are considered with respect to the known systematic changes in pheromone plume structure as the distance to the source decreases.  相似文献   

4.
Abstract. In the field over short grass, pheromone-stimulated oriental fruit moth males, Grapholita molesta (Busck), flying under high windspeeds tended to steer courses more into the wind and to increase their airspeeds compared with those flying in low windspeeds.Thus, optomotor anemotaxis enabled the males to steer relatively consistent upwind track angles and to maintain an upwind progress of between c. 50–100 cm/s despite variable wind velocities.Zigzagging flight tracks were observed at both 10 m and 3 m from the source, as were tracks with no apparent zigzags.Transitions from casting to upwind flight or vice-versa were observed.The durations of the intervals between reversals during both upwind zigzagging flight and casting were consistent with those observed in previous wind-tunnel experiments.The control of altitude was more precise during upwind zigzagging flight than during casting.In general, the side-to-side deviations in the tracks were greater than the up-and-down deviations, with both the side-to-side and vertical distances and their ratios being consistent with previous wind-tunnel studies of pheromone-mediated flight.One difference between the field and laboratory flight tracks was that males in the field exhibited much higher airspeeds than in the wind tunnel.Males occasionally were observed to progress downwind faster than the wind itself, and further analysis showed that they were steering a downwind course in pheromone-free air following exposure to pheromone, which is the first time this has been recorded in moths.We propose that such downwind flight may aid in the relocation of a pheromone plume that has been lost due to a wind-shift, by enabling the moth to catch up to the pheromone as it recedes straight downwind away from the source.  相似文献   

5.
ABSTRACT. The zigzagging behaviour of male Plodia interpunctella flying up a plume of sex pheromone was investigated in a horizontal wind tunnel by detailed analysis of the moths' ground tracks, groundspeeds, orientations and airspeeds. The moths ‘homed in’ on the source of the pheromone plume by progressively reducing airspeed and turning more into wind, thereby reducing groundspeed and the distance between track reversals and so narrowing down their zigzags (Fig. 16). Track angles and times between reversals were unaffected. Removing the wind-borne pheromone plume while a moth was flying along it confirmed that zigzagging can be an anemotactic response to losing the scent rather than a chemotactic response to the plume. For the first 1–2 s after the moth entered pheromone-free air the zigzagging was indistinguishable from that shown when the plume remained; thereafter it widened progressively until the moths were flying to and fro at c. 90° to the wind. The after-effect of odour stimulation persisted for many zigs and zags and many seconds (Figs. 4 and 5). Moths flying along pheromone plumes compensated efficiently for differences of wind speed, showing similar distributions of track angles to wind, and of ground-speeds, in winds of 0.1, 0.2 and 0.3 ms-1 (Figs. 12 and 13). Groundspeed varied with track angle to wind and this relationship was also similar in the three wind speeds (Fig. 14). This constancy of track angles and groundspeeds was due to the moths both increasing their airspeeds and turning more into wind at the higher wind speeds (Fig. 17). Thus the direction of the apparent movement of the ground pattern beneath the moths varied with wind speed. It is inferred that the moths, although unable to sense the wind directly, are able to compensate for changes in wind speed by integrating the wind-dependent optomotor input with information about their own airspeed, or with information about their own turning movements. Maintaining some ‘preferred’ relationship between these inputs by adjustments of orientation and airspeed, would then serve to maintain a given combination of track angle and groundspeed independently of wind speed. The preferred relationship is repeatedly re-set by the changing olfactory input from the pheromone plume, which also controls the switching between left and right of the upwind direction.  相似文献   

6.
ABSTRACT. The flight of male Spodoptera littoralis (Boisd.) (Noctuidae) towards a pheromone source was recorded during the early part of the night using a cine camera and an image intensifier. The cine films were analysed frame by frame to produce flight tracks from which it was possible to calculate the mean advance rate of moths towards the pheromone source and their projected ground speed, for a series of positions downwind of the source. As wind speed was measured the moth's air speed was also estimated. The moths compensated for changes in wind speed by varying their air speed, hence maintaining a ground speed independent of wind speed. The ground speed itself was found to decrease as moths flew closer to the pheromone source.  相似文献   

7.
ABSTRACT. Male oriental fruit moths, Grapholitha molesta (Busck) (Tortricidae), continue to zigzag along a pheromone plume to the source in zero wind, if they have started flight with wind on. If the pheromone source is removed and the plume is hence truncated, moths flying in zero wind out of the end of the plume into clean air increase the width of their reversals and the angles of the straight legs of the tracks so they are more directly across the former wind line. Such moths reach the source less often than do those flying along a continuous plume. The males continue to zigzag up a plume in zero wind, apparently by a combination of sequential sampling of concentration along their path and the performance of an internal, self-steered programme of track reversals (zigzags) whose frequency increases with concentration. Visual feedback may aid in the still-air performance of the zigzags. We propose that both the sequential sampling (longitudinal klinotaxis) and self-steered counter-turning programme also are used in wind as well; anemotaxis apparently polarizes the direction of the zigzags to result in upwind displacement, and the narrow zigzags caused by the higher concentration in the plume keep the male 'locked on' to the odour.  相似文献   

8.
Pheromone gland extracts from calling female Plodia interpunctella contained at least seven compounds that consistently elicited electroantennographic responses from male antennae upon gas chromatographic analysis. Three of these compounds were found to be the previously identified gland constituents, i.e., (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:OAc), (Z,E)-9,12-tetradecadienal (Z9,E12-14:Ald) and (Z,E)-9,12-tetradecadienol (Z9,E12-14:OH). A fourth EAD-active compound was identified as (Z)-9-tetradecenyl acetate (Z9-14:OAc). The homologue (Z)-11-hexadecenyl acetate (Z11-16:OAc) was also identified in the extracts, but showed no EAD activity. The identity of all five compounds was confirmed by comparison of GC retention times and mass spectra with those of synthetic standards. In flight tunnel tests there were no significant differences in response of male P. interpunctella to the bait containing all four EAD-active compounds and the responses to female gland extacts. A behavioural assay of different two-compound blends in the flight tunnel showed that only addition of the corresponding aldehyde to the major pheromone component Z9,E12-14:OAc raised the male response. A subtractive assay, however, revealed that the exclusion of any of the compounds from the complete four-compound blend reduced its activity significantly. We thus conclude that the female-produced sex pheromone of P. interpunctella consists of at least four components, i.e., Z9,E12-14:OAc, Z9,E12-14:Ald, Z9,E12-14:OH and Z9-14:OAc.In a field trapping test performed in a storage facility, the four-component blend attracted significantly more males of P. interpunctella than traps baited with Z9,E12-14:OAc alone. In contrast, the highest number of Ephestia kuehniella males was found in the traps baited with this major component, suggesting that the secondary pheromone components contribute to the species specificity of the blend.  相似文献   

9.
Abstract. The effects of pheromone plume structure and its concentration on the pheromone-mediated flight of male Cadra cautella (Lepidoptera: Phycitinae) were investigated in a laminar-flow wind tunnel. When two C. caurella males flew simultaneously along a ribbon plume of mixed smoke and pheromone, their inflight behaviour was dependent on the instantaneous structure of the plume they encountered. When a male intercepted an intact ribbon filament, he sustained a crosswind course, whereas when he intercepted a turbulent filament (created by an upwind male fragmenting the ribbon plume), he adopted a flight course more due upwind. These results indicate that C. cautella males altered their in-flight manoeuvres in response to instantaneous changes in the fine structure of the pheromone plume. We also demonstrated that differences in the fine structure of the plume had more influence on the flight pattern of C. cautella males than a 1000-fold range in pheromone dose. The size of the plume was increased by adding wind deflectors upwind of the pheromone source, independent of source dosage, males following ribbon plumes flew slow zigzag tracks, whereas males following large, turbulent plumes flew directly to the source in fast, straight tracks with less counterturning.  相似文献   

10.
A pulsed cloud of sex pheromone elicits upwind flight in male moths   总被引:9,自引:1,他引:8  
ABSTRACT. Male oriental fruit moths do not fly upwind in a continuous uniform cloud of pheromone, but readily do so when the cloud is pulsed at 1 or 0.5/s or when a plume from a point source of pheromone is placed within the continuous cloud. It is suggested that males of moth species that require such fluctuating pheromone stimulation for upwind flight will normally receive it from a filamentous, point-source-produced plume. However, we hypothesize that upwind progress may cease close to the source due to excessively high emission rates or inappropriate blend ratios, when fluctuating sensory output becomes attenuated, despite higher actual molecular concentration fluctuations.  相似文献   

11.
The close-range orientation behaviour of male pea moths, Cydia nigricana (F.) (Lepidoptera: Tortricidae), to a substrate contaminated with synthetic sex pheromone was studied in the field. The substrate was a sheet of polypropylene grass on a 1 m diam arena, on the upwind edge of which a pheromone trap had been placed previously for 1 h. After removal of the trap, moths continued to be attracted to the arena and to the vacated trap position. Video-recorded tracks showed that the moths behaved anemotactically whilst on the arena. When the arena was revolved so that the vacated trap position was on the downwind edge, moths continued to fly upwind on the arena, even though they were flying away from the original trap position and down a concentration gradient.  相似文献   

12.
ABSTRACT. When male oriental fruit moths, Grapholita molesta (Busck) (Tortricidae), casting in clean air entered an airstream permeated with pheromone their flight tracks changed immediately on initial contact with pheromone, but after a few seconds returned to casting as if in clean air. The degree of change in the flight track was directly related to the concentration of pheromone. Although little net uptunnel movement occurred in response to the continuous stimulation provided by a uniformly permeated airstream, when an intermittent stimulus provided by a point-source plume was superimposed onto the permeated airstream moths were able to 'lock on' and zigzag uptunnel in the plume. The percentage of moths doing so corresponded to the difference between the peak concentration within the plume and the background concentration of pheromone permeating the airstream. Moths also locked onto, and flew upwind along the pheromone-clean-air boundary formed along a pheromone-permeated side corridor. Because a similar response was observed along a horizontal edge between a pheromone-permeated floor corridor and clean air, we conclude that the intermittent stimulation at the edge perpetuated the narrow zigzagging response to pheromone.  相似文献   

13.
Abstract. The effects of pheromone concentration and ambient temperature on male gypsy moth, Lymantria dispar (L.) (Lepidoptera), flight responses to pheromone were investigated in a wind tunnel. As the pheromone dose increased from 10 ng to 1000 ng, males flew at progressively slower airspeeds and ground speeds, and reduced their wingbeat frequencies. Furthermore, the moths steered significantly smaller course angles as the pheromone concentration increased, indicating that they were adopting a more upwind heading. The overall width of the flight tracks also decreased when males flew in more concentrated pheromone plumes. Estimation of plume dimensions using a male wing-fanning assay showed that as pheromone dosage increased, the resultant active spaces became wider, indicating that an inverse relationship existed between the dimensions of the time-averaged plume and the width of track reversals and that most turns were initiated within the plume. When males were flown at cool (20°C) and warm (26°C) ambient temperatures but to equivalent pheromone emission rates, they exhibited higher airspeeds and ground speeds at the higher temperature but steered larger course angles. Track widths, and length of track legs were, however, similar at the two temperatures. The mean turning frequency was nearly the same (c. 4 turns/s) across all the concentrations and temperatures tested even though the moths' thoracic temperature differed by 5°C when the ambient temperature was varied.  相似文献   

14.
Abstract. The behaviour of Heliothis virescens males flying upwind in the field in a sex pheromone plume was videorecorded and analysed. Males flew faster and straighter, with less counterturning, and heading more directly into the wind when they were 9-11m away from the odour source than when they were 1–3 m away. Regardless of their distance from the source or the windspeed, they maintained an average groundspeed of c. 200 cm s_1, except when they arrived within 1 m of the source, when their groundspeed slowed significantly. Two or more males flying in the plume at the same instant often exhibited either extremely straight and directly upwind tracks or else zigzagging tracks with significant counterturning (as did males flying through the field of view of the cameras at slighdy different times). The males' position, either in the centre of the plume's axis or along one side, might explain these differences in track straightness, which previous studies with H.virescens have shown to be caused by higher frequencies of contact with plume filaments. When a significant shift in wind direction occurred, males tended to make an initial movement in the direction of the shift, perhaps due to latencies of response in both the olfactory and visual systems associated with flying into clean air. The males' behaviour in the field overall was similar to that observed in the wind tunnel, except that their airspeeds and groundspeeds were significantly higher than those observed in the laboratory. The fact that they flew faster in the field can be explained both by the significandy higher windspeeds that males need to compensate for in the field to attain a preferred velocity of image motion, as well as by a higher height of flight over the ground in die field causing a slower apparent motion of images at a given groundspeed compared with the laboratory.  相似文献   

15.
In two races of European corn-borer moths (ECB), the E-race females emit and males respond to 99:1 sex pheromone blend of (E)/(Z)-11-tetradecenyl acetates, whereas the Z-race females and males produce and respond to the opposite 3:97 pheromone blend of (E)/(Z)-11-tetradecenyl acetates, respectively. We previously have shown that female production of the final blend ratio is under control of a major autosomal locus but that the sequence of male upwind flight responses to the blend is controlled by a sex-linked (Z-linked) locus. This sex-linked control of behavioral responses in crosses of E and Z ECB now is confirmed by use of sex-linked TPI (triose phosphate isomerase) allozyme phenotypes to determine the origin of the sex chromosomes in F2 populations. F1 males from reciprocal E × Z crosses generate similar behavioral-response profiles in wind-tunnel studies, with moderate numbers responding to the Z pheromone and intermediate blends (35%–65% Z), but very few responding to the E pheromone. The F2 behavioral-response profiles indicate that they are composed of 1:1 mixtures of hybrids and paternal profiles. Analysis of TPI allozyme differences allowed us to separate male F2 populations into individuals whose Z chromosomes both originated from their grandfathers, and individuals who had one Z chromosome originating from each grandparent. With these partitioned F2s, the TPI homozygotes exhibited behavioral-response profiles very much like their grandfathers, whereas the TPI hybrids produced response profiles similar to their heterozygous F1 fathers. These results demonstrate incontrovertibly that the response to sex pheromone in male ECB is controlled by a sex-linked gene that is tightly linked to the TPI locus and therefore is independent of the locus controlling pheromone blend production in females.  相似文献   

16.
ABSTRACT. Free-flying, wild Glossina pallidipes Aust. and G. morsitans Westw. were video-recorded in the field in Zimbabwe as they flew out of air permeated with host odour (camera 2.5 m up, looking down at the ground). Analysis of the flight tracks supports the proposal of Bursell (1984) that tsetse flies attracted to an invisible source of host odour respond weakly if at all to wind direction while in flight: on losing contact with the odour the flies made a sharp turn that was uncorrelated with wind direction. The size of the turn varied considerably, with a marked discontinuity in the log-survivorship curve at 120° (a fly which had turned through at least 120° was 5 times as likely to stop the turn as a fly which had turned <120°). Over half the flies made turns of >90° (and <2 m diameter) within the 2×2.5 m field of view of the camera. It is suggested that these turns initially served to arrest the upwind progress of the fly, with the size of the turn determining the degree to which the fly backtracked towards where it last detected odour or continues cross-wind. Mean flight speed was c. 5 ms-1 (min. 2.5, max. probably 7ms-1).  相似文献   

17.
Six compounds were identified from gland extracts of the cotton bollworm, Heliothis armigera(Hubner): (Z)-11-hexadecenal (Z11-16:Ald), (Z)-9-hexa-decenal (Z9-16:Ald), hexadecanal, (Z)-11-hexadecenol (Z11-16:OH), (Z)-7-hexadecenal (Z7-16:Ald), and (Z)-9-tetradecenal (Z9-14:Ald). Each of the compounds that were identified was examined for its ability to elicit sexual responses from male moths in a flight tunnel. Males flew upwind to Z11-16:Ald alone, but greater levels of copulatory responses were evoked with the addition of 2.5% Z9-16:Ald to the Z11-16:Ald. Addition of hexadecanal to the binary mixture had no effect in raising the behavioral response of the males in the flight tunnel. The effect of Z7-16:Ald on male flight depended on the loading. The addition of 1% of this component to 2 mg of the binary mixture reduced levels of copulatory response, but the same addition (1 %) to 10 g of the binary mixture increased copulatory response. The addition of 79-14:Ald or Z11-16:OH to the binary mixture reduced behavioral responses of males. High loadings of the binary mixture (200–2000 g) were better than a low loading (10 g) in eliciting response of males.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 2455-E, 1988 series.  相似文献   

18.
ABSTRACT. Males of two species of moths ( Grapholitha molesta (Busck) and Heliothis virescens (F.)) were flown in a sustained-flight tunnel in horizontal pheromone plumes. The up-tunnel velocity of the moths increased with increasing height of flight and for G.molesta was independent of tunnel wind velocities. Use of moving ground patterns verified that the height of flight above the ground was the factor related to the changes in up-tunnel velocity. Even though up-tunnel velocity increased with increased flight height, angular velocity of image motion did not. Males appeared to use visual cues from the ground pattern and from other sources to determine their up-tunnel velocities. The relationship of preferred retinal velocities to optomotor anemotaxis is discussed.  相似文献   

19.
Free-flying male gypsy moths (Lymantria dispar)head upwind in response to sex pheromone. Males typically fly in a zigzag path, with mean ground speeds modulated by pheromone concentration and ambient temperature, but not by wind speed. We studied the effect of male size on ground speeds and additional flight track parameters. Mean net ground speed along the wind line was fastest among large males and was slower in medium and small males. Similarly, mean airspeeds and ground speeds along the flight tracks increased from small to large males. Males from all three size classes steered similar mean course angles. Small males, however, had larger mean track angles than larger males, and mean drift angles were also larger for small males. Turning rates (frequency of turns across the wind line) and interturn distances (net crosswind displacement between turn apices) were not significantly different among the three size classes; however, large males had a trend toward a reduced mean turning rate and increased mean interturn distance. The steering of similar course angles by males from all three size classes and the higher airspeeds among larger males (the two variables males can actively control during free flight) suggest that changes in other flight parameters are a result primarily of increased ground speed among large males.  相似文献   

20.
Abstract. The effects of plume intermittency and volume on behavioural and flight responses to pheromone of male Cadra cautella (Walker) (Lepidoptera: Phycitinae) were investigated in a pulling wind tunnel. The fine-scale structure of turbulent pheromone plumes was mimicked and manipulated using a pulser device that generated continuous ribbon plumes or intermittent plumes with defined pulse frequency and volume. As pulse frequency increased from 0.6 to 5 Hz and injected volume increased from 0.5 to 5 mls-1, males flew progressively higher air and ground speeds, turned less frequently, and steered smaller course angles, resulting in straighter flight tracks. The faster the frequency of pulses and the greater the volume of the plume, the higher the proportion of males responding, the shorter their latencies, and the less time spent in the behaviour. Flight tracks of male C.cautella to point sources of pheromone depend on the frequency of filaments encountered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号