首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine whether the increase in lipoprotein lipase activity displayed by the adipose tissue of obese (fa/fa) rats as compared with that of lean (Fa/fa) rats could be ascribed to a change in the content or in the catalytic properties of the enzyme. The question was addressed in rats of two ages: in 7-day-old suckling and in 30-day-old post-weaning pups. Inguinal fat-pads were removed surgically (7 days of age) or after killing (30 days of age), and acetone-extract powders were prepared. The relative quantity of enzyme was assessed by immunotitration using an antiserum raised in goat against purified lipoprotein lipase from rat adipose tissue. The results indicate that increases in enzyme activity in obese animals were strictly paralleled by increases in the amount of enzyme in suckling as well as in post-weaning pups. Moreover, the apparent Km values of lipoprotein lipase for its substrate triacylglycerol were identical in the two genotypes. In conclusion, the genotype-mediated increase in lipoprotein lipase activity in adipose tissue of obese Zucker rats was fully accounted for by an increase in the content of the enzyme. In addition, this work documents the mechanism of the increase in lipoprotein lipase activity during weaning, which is mediated mainly through changes in the adipose-tissue enzyme content.  相似文献   

2.
Lipoprotein lipase activity in liver of the rat fetus   总被引:2,自引:0,他引:2  
Lipoprotein lipase activity was determined in tissue from pregnant and post-partum rats and virgin adult controls and in liver from fetuses and pups. A glycerol-based emulsion of tri-(1-14C)-oleoyl-glycerol was used as substrate. According to the inhibitory characteristics in the presence of protamine and NaCl, the measured activity corresponded to the extrahepatic lipoprotein lipase of the adults. Compared to control values, the lipoprotein lipase activity was reduced in the mother's adipose tissue in late gestation and during the first days after parturition while it did not change in heart. Liver activity was negligible in mothers and controls while in the fetus it increased until the time of birth. The presence of this enzyme may allow the fetus liver to remove circulating triglycerides and to store them in preparation for early extrauterine life.  相似文献   

3.
The lipoprotein lipase (clearing-factor lipase) activity of the white adipose tissue from rats aged between 1 and 145 days was determined. Five adipose-tissue sites (epididymal, uterine, subcutaneous, perirenal and intramuscular) together with serum concentrations of triacylglycerol, cholesterol and glucose were studied. The pattern of enzyme-activity change was remarkably similar in all the sites studied, although the growth of the tissues proceeded non-uniformly. After a peak of activity early in suckling, lipoprotein lipase activity fell to low values by 20 days of age. At weaning (21 days) the activity increased sharply and within 5 days high values were regained. The serum triacylglycerol and cholesterol concentrations were low at birth and reached peaks of concentration coincidentally with the minima of white-adipose-tissue lipoprotein lipase activities, seen late in suckling. The changes in enzyme activity were related to other metabolic changes in adipose tissue and with the known changes in plasma insulin concentrations occurring during development.  相似文献   

4.
Liver lipoprotein lipase activity in neonatal (1- and 5-day-old) rats was 2-3-times than in the liver of adult rats. In mid-suckling (15-day-old) or weaned (30-day-old) animals, it was not significantly different from the low activity detected in adult rats. Starvation resulted in a 3-fold increase of lipoprotein lipase activity in the neonatal liver, but did not affect the activity in the liver of mid-suckling, weaned or adult rats. When isolated livers from both 1- and 5-day-old pups were perfused with heparin, a sharp peak of lipoprotein lipase activity appeared in the perfusate. In fed neonates, the peak area accounted for about 70% of the total (released + non-releasable) activity. In starved neonates, the proportion of heparin-releasable activity increased up to about 90%. These results indicate that neonatal rat liver lipoprotein lipase activity is markedly affected by changes in the nutritional status of the animal, and the effect is restricted to the vascular pool of the enzyme, as was reported in extrahepatic tissues from adult rats.  相似文献   

5.
Feeding glucose to fasted rats resulted in a decrease in the activity of heparin-releasable lipoprotein lipase in heart perfusates. Upon feeding fat to glucose-fed animals the level of heparin-releasable lipoprotein lipase increased 10–14 fold. An immunological titration was used to determine whether the changes in lipase activity following the various nutritional treatments were due to changes in the amount of enzyme present or to activation/inactivation processes. These data suggest that changes in the enzyme activity are due to alteration in the quantity of lipoprotein lipase protein.  相似文献   

6.
The relationship between the genes controlling heart and adipose lipoprotein lipase in fasted animals has been studied. 32 inbred mouse strains were tested for variations in heart or adipose specific activity and thermolability. The survey revealed that specific activity of heart and adipose lipoprotein lipase varied as much as 3-fold and 20-fold, respectively. In thermolability, up to a 2-fold variation was observed in the lipase in each tissue. The correlation coefficient between variations in heart and adipose lipase was apparently not significant for both parameters studied. Additional studies were performed in two strains, BALB/c and C57BL/6, along with the recombinant inbred set derived from them. The two strains did not show genetic variation for lipoprotein lipase thermolability, although the inactivation rate of heart lipase was higher than that of adipose lipase. However, BALB/c and C57BL/6 displayed significant differences in their levels of lipoprotein lipase specific activity. Thus, strain C57BL/6 showed higher heart activity when compared to BALB/c, whereas the latter showed higher adipose lipase activity when compared to C57BL/6, i.e. an inverse relationship. The specific activity levels of heart and adipose lipoprotein lipase in the recombinant inbred strains derived from BALB/c and C57BL/6 exhibited independent inheritance. Thus, in adipose tissue, a single major gene seems to control the variation observed, while the inheritance pattern of heart activity could imply involvement of more than one gene. Moreover, two out of the seven recombinant strains showed distinct recombinant phenotypes, indicating that separate unlinked genes control the variations found in heart and adipose activity. We conclude that the expression of heart and adipose lipoprotein lipase activity is under independent genetic control.  相似文献   

7.
The effects of infant diet (breast milk or formula containing 2, 30 or 60 mg/dl cholesterol) and subsequent dietary cholesterol (0.02, 1.0 or 1.7 mg/kcal) and fat (saturated or unsaturated) on heparin-releasable lipolytic activity from omental adipose tissue was estimated from 99 baboons of 5-8 years of age. This lipase activity was characterized as lipoprotein lipase based on salt inhibition and apolipoprotein C-II activation. Lipoprotein lipase activity released from adipose tissue by heparin was significantly (P less than 0.002) lower in high cholesterol-fed baboons than in those fed low cholesterol. Most of this difference was due to impaired long-term heparin release of lipoprotein lipase. Adipose tissue lipoprotein lipase increased with increasing fat cell size regardless of diet, but there was no effect of diet on adipocyte size. There were no significant effects of infant cholesterol intake nor adult saturated or unsaturated fat on lipoprotein lipase activity. Adult baboons breast fed as infants had lower adipose tissue lipoprotein lipase activity (P less than 0.07) than adults fed formula as infants.  相似文献   

8.
The activity of lipoprotein lipase was measured in white and brown adipose tissues, red vastus lateralis muscle, and heart of rats that have been insulin deficient (streptozotocin, 75 mg.kg-1) for 2 weeks, and that have then received implants of insulin-delivering minipumps (17 U.kg-1.day-1) for 1 or 4 days. Normal glycemia was restored in insulin-deficient animals after 4 days of insulin treatment. Hypertriglyceridemia, but not hypercholesterolemia, was reversed after 4 days of insulin infusion. After 2 weeks of insulin deficiency, fasting lipoprotein lipase activity was lowered in all tissues studied. In white adipose tissue, lipoprotein lipase decreased to 50% of control values. After a single day of insulin infusion, even if tissue weight has not yet been greatly affected, total activity was completely restored to control levels. Enzyme activity in brown adipose tissue was also depressed in deficient animals, and insulin infusion was followed by a slow recovery of activity, to a level intermediate between those of control and insulin-deficient groups. Insulin status had milder effects on lipoprotein lipase activity in vastus lateralis muscle than in the adipose tissues. Deficient rats displayed 60% less activity than controls, and 4 days of hormone infusion only partially restored enzyme activity. There was a large loss of lipoprotein lipase in the heart following 2 weeks of insulin depletion, which was not counteracted by hormone infusion. Thus the speed and extent of recovery of lipoprotein lipase activity following hormone replacement in insulin-deficient animals varied widely among tissues. These findings suggest that insulin is part of the factors that determine the tissue specificity of lipoprotein lipase regulation.  相似文献   

9.
Lipoprotein lipase activity was higher in fat-pad pieces than in isolated adipocytes from the same fed rats, whereas hydrolysis of triacylglycerols from triacylglycerol-rich lipoproteins was similar in the two preparations when incubated either in basal conditions or in the presence of heparin. In both preparations there was a similar release of lipoprotein lipase activity into the medium during basal incubation, enhanced by the presence of heparin. In fat-pad pieces, but not in isolated adipocytes, incubation with heparin produced a decrease in the lipoprotein lipase activity measured in the tissue preparation. In fat-pad pieces from 24 h-starved rats, lipoprotein lipase activity was the same as in isolated adipocytes from the same animals and incubation with heparin did not affect the appearance of lipoprotein lipase in the medium or the utilization of triacylglycerols from triacylglycerol-rich lipoproteins. These results support the following conclusions. (1) The effectiveness of lipoprotein lipase in adipose tissue preparations in vitro depends more on its availability to the substrate than on its total activity. (2) Heparin acts on adipose tissue preparations from fed animals both by enhancing the release of pre-existing extracellular enzyme (which is absent in isolated adipocytes) and by enhancing the transfer outside the cells of the intracellular (and mainly undetectable) enzyme that is activated in the secretion process. (3) In adipose tissue from starved animals there is not only a decrease in the active extracellular form of lipoprotein lipase activity but also a reduction in the intracellular (and mainly undetectable) pool of the enzyme.  相似文献   

10.
1. Newborn rats were reared in litters of either four or sixteen individuals. The animals from the small litters gained body weight more rapidly than those from large litters during the first 29 days of postnatal life studied. 2. The relative weights of the perigenital, perirenal, subcutaneous and intramuscular white-adipose-tissue sites in the animals from small litters indicated their relative obesity compared with controls. 3. The adipose depots from animals reared in small litters had a greater proportion of lipid present, by weight, and had a greater number of larger fat-cells present in them compared with the depots of animals reared in large litters. 4. Compared with both normal-sized litter controls and animals reared in sixteens, during the period of study the animals from small litters were hypertriacylglycerolaemic but normocholesterolaemic. 5. During suckling the blood glucose concentrations of animals reared in fours were increased, as were the concentrations of circulating immunoreactive insulin. 6. During the 29 days of life studied, in general, the lipoprotein lipase activity of adipose depots from animals reared in fours was greater than for animals in large litters when expressed as mumol of nonesterified fatty acid released from the substrate/h per g fresh weight of tissue, per depot, or per million fat-cells, but were similar per cm(2) of fat-cell surface area. 7. The previously noted [Cryer & Jones (1978) Biochem. J.172, 319-325] pattern of mid-suckling elevation, late-suckling decline and post-weaning increase in the lipoprotein lipase activity of the four white-adipose depots studied was not obliterated by the nutritional manipulations employed. 8. The relation of the enzyme-activity changes and their hormonal stimuli to triacylglycerol accumulation in fat-cells of animals from large and small litters is discussed in relation to the possible significance they may have to our understanding of neonatally induced obesity.  相似文献   

11.
The role of glucagon in regulating the lipoprotein lipase activities of rat heart and adipose tissue was examined. When starved rats were fed glucose, heart lipoprotein lipase activity decreased while that of adipose tissue increased. Glucagon administration to these animals at the time of glucose feeding prevented the decline in heart lipoprotein lipase activity, but had no effect on the adipose tissue enzyme. When glucagon was administered to fed rats, heart lipoprotein lipase activity increased to levels found in starved animals but there was no change in the adipose tissue enzyme. It is suggested that the reciprocal lipoprotein lipase activities in heart and adipose tissue of fed and starved animals may be regulated by the circulating plasma insulin and glucagon concentrations.  相似文献   

12.
The separation of rat epididymal adipocytes into plasma-membrane, mitochondrial, microsomal and cytosol fractions is described. The fractions, which were characterized by marker-enzyme analysis and electron-micrographic observation, from the cells of fed and 24 h-starved animals were used to prepare acetone/diethyl ether-dried powders for the measurement of lipoprotein lipase activities. The highest specific activities and proportion of recovered lipoprotein lipase activity were found in the plasma-membrane and microsomal fractions. The two fractions from the cells of fed rats showed similar activities and enrichments of the enzyme, these activities being higher than the plasma-membrane and lower than the microsomal activities recovered from the cells of starved animals. Chicken and guinea-pig anti-(rat lipoprotein lipase) sera were prepared, and an indirect labelled-second-antibody cellular immunoassay, using 125I-labelled rabbit anti-(chicken IgG) or 125I-labelled sheep anti-(guinea-pig IgG) antibodies respectively, for the detection of cell-surface enzyme was devised and optimized. The amount of immunodetectable cell-surface lipoprotein lipase was higher for cells isolated from fed animals than for cells from 24 h-starved animals, when either anti-(lipoprotein lipase) serum was used in the assay. The amount of immunodetectable cell-surface lipoprotein lipase fell further when starvation was extended to 48 h. The lipoprotein lipase of plasma-membrane vesicles was shown to be a patent activity and to be immunodetectable in a modification of the cellular immunoassay. Although the functional significance of the adipocyte surface lipoprotein lipase is not known, the possibility of it forming a pool of enzyme en route to the capillary endothelium is advanced.  相似文献   

13.
This study evaluated the effects of beta 2-adrenoceptor stimulation on some determinants of triglyceride metabolism. Male Sprague-Dawley rats were injected twice daily with clenbuterol (30 micrograms.kg-1) for 7 days, or with an equivalent volume of vehicle. Serum triglycerides, hepatic triglyceride secretion rate, and lipoprotein lipase activity in white and brown adipose tissues as well as in red vastus lateralis muscle and heart were evaluated in the fasting state and following a fat-free, high-sucrose meal, 3 h after the last agonist injection. In rats killed in the fasting and postprandial states, clenbuterol reduced the mass of white adipose tissue (-25 and -12%, respectively; p < 0.02), whereas it increased the mass of vastus lateralis muscle (+11 and +7%; p < 0.002) and heart (+13 and %; p < 0.0001). In vehicle-injected animals, the fasting state was associated with lower lipoprotein lipase activity in white and brown adipose tissues, and higher enzyme activity in vastus lateralis and heart, compared with the postprandial state. Postprandially, treatment with clenbuterol reduced lipoprotein lipase activity in white adipose (-24%), whereas it increased enzyme activity in brown adipose (+107%) as well as in vastus lateralis (+35%). In fasted animals, no significant variation of enzyme activity in these tissues was observed following clenbuterol treatment, whereas in the heart, a decrease of lipoprotein lipase activity was observed (-22%). Clenbuterol lowered serum triglycerides significantly (-23%), but not their rate of secretion, whereas the agonist decreased the insulin to glucagon ratio only in the postprandial state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Age-related changes in the activities of extrahepatic lipoprotein lipase and hepatic triacylglycerol lipase were determined during a primed/constant-rate infusion of heparin for 2 h in puppies between birth and 18 weeks of age. The early (storage) and late (synthetic) phases were measured. Both phases of hepatic triacylglycerol lipase activity were well developed in the first week, reflecting the metabolic maturity of the liver at birth. During the 18 weeks of study, the activity remained relatively unchanged except for a sharp peak at 12 weeks. Extrahepatic lipoprotein lipase activity was low in the first 4 weeks of suckling. Its storage pool increased 6-fold in the next 14 weeks, with a less marked rise in its late (synthetic) pool. Sustained increases in the activity of this enzyme were first noticed during weaning, when the insulin-secretory response matured. Endogenous insulin-secretory capacity rather than the fat content of the feed appeared significant in the postnatal development of lipoprotein lipase (Clearing-factor lipase) activity.  相似文献   

15.
1. Subcellular fractions, characterized by using morphological, compositional and enzymic markers, were prepared from rat heart tissue and cells isolated from the hearts of fed and 24 h-starved rats. 2. The lipoprotein lipase activity of fractions from whole tissue and isolated cells was determined in either fresh fractions or in acetone/diethyl ether powders of the fractions. 3. Lipoprotein lipase activity was present in all the fractions from tissue and cells, but was found to be of highest relative specific activity in the microsomal () fractions. 4. In fractions prepared from the isolated cells of hearts from starved rats the proportion of the total lipoprotein lipase present and its relative specific activity in the microsomal fraction were greater than in the equivalent fractions from fed animals. 5. The enhancement of lipoprotein lipase activity as a result of the acetone/diethyl ether powder preparation of fractions was most extensive in the microsomal fractions. 6. Investigation of the microsomal fraction showed that the lipoprotein lipase activity present was in two pools, one of which was within endoplasmic-reticulum vesicles. 7. The observations were consistent with the possibility that the cardiac-muscle cell could be the origin of the lipoprotein lipase activity functional in triacylglycerol uptake by the heart.  相似文献   

16.
Rats fed a diet deficient in essential fatty acids have a low level of serum very low density lipoproteins (VLDL). It was found that after intraperitoneal injection of heparin, deficient rats had a higher level of lipoprotein lipase activity in their plasma than did normal rats. VLDL isolated from serum of normal and deficient rats were compared as substrates for postheparin lipase of rat plasma. There was no significant difference in V(max) between the two preparations of lipoproteins, but the apparent K(m) for lipoproteins from deficient animals was significantly less than that for normal animals. These observations suggest that the low concentration of VLDL in deficient rats may be explained (a) by an increased activity of lipoprotein lipase in the tissues of these animals and (b) by the VLDL of deficient rats being more rapidly hydrolyzed at low concentrations by lipoprotein lipase than VLDL from normal rats.  相似文献   

17.
Combined lipase deficiency, cld, is a recessive mutation within the T/t complex of mouse chromosome 17. Mice homozygous for this defect display severe functional deficiencies of lipoprotein lipase and the related hepatic lipase. They develop massive hyperchylomicronemia and die within 3 days when allowed to suckle. Heart, diaphragm muscle, and brown adipose tissue of 1-day-old cld/cld and unaffected mice incorporated in vivo [35S]methionine into a protein that could be immunoprecipitated by antilipoprotein lipase serum. The immunoprecipitated protein in all tissues had the same Mr as bovine lipoprotein lipase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proportion of radioactivity in the lipoprotein lipase band to that in total protein was 0.02% in tissues of cld/cld mice and 0.01% in tissues of unaffected mice. There was 2-6 times more lipoprotein lipase-like protein (determined by immunoassay) in tissues of defective mice than in those of unaffected mice. These findings indicate that the cld mutation did not cause deletion of the structural gene for lipoprotein lipase. Lipoprotein lipase activity in heart, diaphragm muscle, brown adipose tissue, and lung of cld/cld mice was less than 5% of that in tissues of unaffected mice. This low activity could be inhibited more than 85% by antilipoprotein lipase serum, but not by nonimmune serum. It is concluded that tissues in cld/cld mice synthesize a lipoprotein lipase-like protein which has subnormal catalytic activity.  相似文献   

18.
Lipoprotein lipase and hepatic lipase were measured in rat plasma using specific antisera. Mean values for lipoprotein lipase in adult rats were 1.8-3.6 mU/ml, depending on sex and nutritional state. Values for hepatic lipase were about three times higher. Lipoprotein lipase activity in plasma of newborn rats was 2-4-times higher than in adults. In contrast, hepatic lipase activity was lower in newborn than in adult rats. Following functional hepatectomy there was a progressive increase in lipoprotein lipase activity in plasma, indicating that transport of the enzyme from peripheral tissues to the liver normally takes place. Lipoprotein lipase, but not hepatic lipase, increased in plasma after a fat meal. An even more marked increase, up to 30 mU/ml, was seen after intravenous injection of Intralipid. Plasma lipase activity decreased in parallel with clearing of the injected triacylglycerol. 125I-labeled lipoprotein lipase injected intravenously during the hyperlipemia disappeared somewhat slower from the circulation than in fasted rats, but the uptake was still primarily in the liver. Hyperlipemia, or injection of heparin, led to increased lipoprotein lipase activity in the liver. This was seen even when the animals had been pretreated with cycloheximide to inhibit synthesis of new enzyme protein. These results suggest that during hypertriglyceridemia lipoprotein lipase binds to circulating lipoproteins/lipid droplets which results in increased plasma levels of the enzyme and increased transport to the liver.  相似文献   

19.
The present study was performed to investigate the effect of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and tissues of rats fed diets containing either coconut oil or fish oil as dietary fat, using a bifactorial experimental design. To ensure an adequate food intake, all the rats were force-fed by gastric tube. Experimental diets contained either 0.8 mg zinc/kg (zinc-deficient diets) or 40 mg zinc/kg (zinc-adequate diets). The effects of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and postprandial triglyceride concentrations and distribution of apolipoproteins in serum lipoproteins depended on the type of dietary fat. Zinc-deficient rats fed the coconut oil diet exhibited a reduced activity of lipoprotein lipase in postheparin serum and adipose tissue, markedly increased concentrations of triglycerides in serum, and a markedly reduced content of apolipoprotein C in triglyceride-rich lipoproteins and high density lipoproteins compared with zinc-adequate rats fed coconut oil. By contrast, zinc-deficient rats fed the fish oil diet did not exhibit reduced activities of lipoprotein lipase in postheparin serum and adipose tissue and increased concentrations of serum lipids compared with zinc-adequate rats fed the fish oil diet. This study suggests that a reduced activity of lipoprotein lipase might contribute to increased postprandial concentrations of serum triglycerides observed in zinc-deficient animals. However, it also demonstrates that the effects of zinc deficiency on lipoprotein metabolism are influenced by dietary fatty acids.  相似文献   

20.
In this study, a correlation was sought between the circulating lipoprotein lipase activity and nutritional state in the rat. In fed rats, the plasma lipoprotein lipase activity was between 30 and 120 munits/ml, whereas after an overnight fast in restraining cages, the lipoprotein lipase plasma levels were between 280 and 500 munits/ml. The plasma lipoprotein lipase activity was inhibited by a specific high titre goat antiserum to rat lipoprotein lipase. No effect of fasting was seen on the plasma hepatic triacylglycerol lipase. 6 h after fasting, adipose tissue lipoprotein lipase decreased maximally, but plasma lipoprotein lipase was not changed and rose only after 16 h. Thus, it seems that most of the lipoprotein lipase activity in the fasting plasma was related to the 3-fold rise in lipoprotein lipase activity in the heart, which may represent total muscle lipoprotein lipase. The increase in heart lipoprotein lipase was due in part to an increase in the t1/2 of the enzyme from 1.2 to 2.9 h. To determine whether the high plasma levels in the fasting rats might result from impaired clearance of the enzyme by the liver, functional hepatectomy was carried out. 15 min after hepatectomy, plasma lipoprotein lipase rose up to 20-fold in fed and about 6-fold in fasting rats. Lipoprotein lipase activity extracted by the liver was calculated to be 30-60 munits/ml in the fed and 171-247 munits/ml plasma per min in fasting rats. An increase in lipoprotein lipase activity in extrahepatic tissues (heart, lung, kidney, diaphragm and adrenal) occurred 30 min after hepatectomy in fed rats. The increase in heart lipoprotein lipase was due to an increase in heparin-releasable fraction. Since no impairment of hepatic clearance of circulating plasma lipoprotein lipase was found, the high fasting plasma lipoprotein lipase activity may be related to an increase in enzyme synthesis, decreased enzyme turnover and an expansion of the functional pool in tissues such as the heart and probably muscle. The present findings indicate that measurement of endogenous plasma lipoprotein lipase can provide information with respect to the size of the functional pool under normal and pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号