首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Propionate metabolism in Salmonella typhimurium occurs via 2-methylcitric acid cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate, is catalysed by 2-methylisocitrate lyase (PrpB). Here we report the X-ray crystal structure of the native and the pyruvate/Mg(2+) bound PrpB from S. typhimurium, determined at 2.1 and 2.3A, respectively. The structure closely resembles that of the Escherichia coli enzyme. Unlike the E. coli PrpB, Mg(2+) could not be located in the native Salmonella PrpB. Only in pyruvate bound PrpB structure, Mg(2+) was found coordinated with pyruvate. Binding of pyruvate to PrpB seems to induce movement of the Mg(2+) by 2.5A from its position found in E. coli native PrpB. In both the native enzyme and pyruvate/Mg(2+) bound forms, the active site loop is completely disordered. Examination of the pocket in which pyruvate and glyoxalate bind to 2-methylisocitrate lyase and isocitrate lyase, respectively, reveals plausible rationale for different substrate specificities of these two enzymes. Structural similarities in substrate and metal atom binding site as well as presence of similar residues in the active site suggest possible similarities in the reaction mechanism.  相似文献   

2.
Pectates lyase (Pel) plays an important role in bacteria pathogenicity. The crystal structure of Pel from Acidovorax citrulli (AcPel) has been solved to 1.37 Å resolution. AcPel belongs to the polysaccharide lyase family 1 (PL1), which has a characteristic right‐handed β‐helix fold. AcPel is similar with other Pels in the PL1 family, but also shows some differences at the substrate binding site. Proteins 2013; 81:1485–1490. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Three electrophoretically homogeneous isocitrate lyase (ICL) isoforms were obtained by 4-step purification from corn scutellum (ICL1 and ICL2) and green leaves (ICL). Their physicochemical, kinetic, and regulatory properties were analyzed. The molecular masses of ICL1, ICL2, and ICL isoforms determined by gel filtration are 164, 207, and 208 kDa, respectively. The proteins have homotetrameric quaternary structure with subunit molecular masses of 43, 48, and 47 kDa for ICL1, ICL2, and ICL, respectively. We found some differences in pH optimum, K m, and regulation by divalent metal cations between ICL1 and ICL2 and significant similarity of ICL2 and ICL. Based on these data, we suggest the participation of these isoforms in metabolic regulation of the glyoxylate cycle, organic acid metabolism during photorespiration in leaves and acidosis in corn seeds.  相似文献   

4.
Lysine succinylation (Ksucc) is a newly identified protein posttranslational modification (PTM), which may play an important role in cellular physiology. However, the role of lysine succinylation in antibiotic resistance remains elusive. Isocitrate lyase (ICL) is crucial for broad-spectrum antibiotics tolerance in Mycobacterium tuberculosis (Mtb). We previously found that MtbICL (Rv0467) has at least three succinylated lysine residues, namely K189, K322, and K334.To explore the effect of succinylation on the activity of MtbICL, mutants’ mimicry of the lysine succinylation were generated by site-directed mutagenesis. ICL-K189E mutant strain is more sensitive than the wild-type to rifampicin and streptomycin, but not isoniazid. For the in vitro activity of the purified isocitrate lyase, only K189E mutant showed significantly decreased activity. Crystal structure analysis showed that Lys189 Glu dramatically increased the pKa of Glu188 and decreased the pKa of Lys190, whereas had negligible effect on other residues within 5?Å as well as disruption of the electrostatic interaction between Lys189 and Glu182, which might prevent the closure of the active site loop and cause severe reduction of the enzyme activity. Considering the genetic, biochemical, and crystallographical evidences together, the succinylation of specific ICL residue can fine-tune the bacterial resistance to selected antibiotics. The decreased enzymatic activity resulting from the succinylation-changed electrostatic interaction might underlie this phenotype. This study provided the first insight into the link between lysine succinylation and antibiotic resistance.  相似文献   

5.
The crystal structure of alginate (poly alpha-l-guluronate) lyase from Corynebacterium sp. (ALY-1) was determined at 1.2A resolution using the MAD method and bromide ions. The structure of ALY-1 is abundant in beta-strands and has a deep cleft, similar to the jellyroll beta-sandwich found in 1,3-1,4-beta-glucanase. The structure suggests that alginate molecules may penetrate into the cleft to interact with the catalytic site of ALY-1. The reported crystal structure of another type of alginate lyase, A1-III, differs from that of ALY-1 in that it consists almost entirely of alpha-helical structure. Nevertheless, the putative catalytic residues in both enzymes are positioned in space in nearly identical arrangements. This finding suggests that both alginate lyases may have evolved through convergent evolution.  相似文献   

6.
IscA, an 11 kDa member of the hesB family of proteins, binds iron and [2Fe-2S] clusters, and participates in the biosynthesis of iron-sulfur proteins. We report the crystal structure of the apo-protein form of IscA from Escherichia coli to a resolution of 2.3A. The crystals belong to the space group P3(2)21 and have unit cell dimensions a=b=66.104 A, c=150.167 A (alpha=beta=90 degrees, gamma=120 degrees ). The structure was solved using single-wavelength anomalous dispersion (SAD) phasing of a selenomethionyl derivative, and the IscA model was refined to R=21.4% (Rfree=25.4%). IscA exists as an (alpha1alpha2)2 homotetramer with the (alpha1alpha2) dimer comprising the asymmetric unit. Cys35, implicated in Fe-S cluster assembly, is located in a central cavity formed at the tetramer interface with the gamma-sulfur atoms of residues from the alpha1 and alpha2' monomers (and alpha1'alpha2) positioned close to one another (approximately equal 7 A). C-terminal residues 99-107 are disordered, and the exact positions of Cys99 and Cys101 could not be determined. However, computer modeling of C-terminal residues in the tetramer suggests that Cys99 and Cys101 in the alpha1 monomer and those of the alpha1' monomer (or alpha2 and alpha2') are positioned sufficiently close to coordinate [2Fe-2S] clusters between the two dimers, whereas this is not possible within the (alpha1alpha2) or (alpha1'alpha2') dimer. This symmetrical arrangement allows for binding of two [2Fe-2S] clusters on opposite sides of the tetramer. Modeling further reveals that Cys101 is positioned sufficiently close to Cys35 to allow Cys35 to participate in cluster assembly, formation, or transfer.  相似文献   

7.
The crystal structure of a conserved hypothetical protein from Escherichia coli has been determined using X-ray crystallography. The protein belongs to the Cluster of Orthologous Group COG1553 (National Center for Biotechnology Information database, NLM, NIH), for which there was no structural information available until now. Structural homology search with DALI algorism indicated that this protein has a new fold with no obvious similarity to those of other proteins with known three-dimensional structures. The protein quaternary structure consists of a dimer of trimers, which makes a characteristic cylinder shape. There is a large closed cavity with approximate dimensions of 16 Å × 16 Å × 20 Å in the center of the hexameric structure. Six putative active sites are positioned along the equatorial surface of the hexamer. There are several highly conserved residues including two possible functional cysteines in the putative active site. The possible molecular function of the protein is discussed.  相似文献   

8.
Echicetin is a heterodimeric protein from the venom of the Indian saw-scaled viper, Echis carinatus. It binds to platelet glycoprotein Ib (GPIb) and thus inhibits platelet aggregation. It has two subunits, alpha and beta, consisting of 131 and 123 amino acid residues, respectively. The two chains are linked with a disulphide bond. The level of amino acid sequence homology between two subunits is 50%. The protein was purified from the venom of E.carinatus and crystallized using ammonium sulphate as a precipitant. The crystal structure has been determined at 2.4A resolution and refined to an R-factor of 0.187. Overall dimensions of the heterodimer are approximately 80Ax35Ax35A. The backbone folds of the two subunits are similar. The central portions of the polypeptide chains of alpha and beta-subunits move into each other to form a tight dimeric association. The remaining portions of the chains of both subunits fold in a manner similar to those observed in the carbohydrate-binding domains of C-type lectins. In echicetin, the Ca(2+)-binding sites are not present, despite being topologically equivalent to other similar Ca(2+)-binding proteins of the superfamily. The residues Ser41, Glu43 and Glu47 in the calcium-binding proteins of the related family are conserved but the residues Glu126/120 are replaced by lysine at the corresponding sites in the alpha and beta-subunits.  相似文献   

9.
IscS is a widely distributed cysteine desulfurase that catalyzes the pyridoxal phosphate-dependent desulfuration of L-cysteine and plays a central role in the delivery of sulfur to a variety of metabolic pathways. We report the crystal structure of Escherichia coli IscS to a resolution of 2.1A. The crystals belong to the space group P2(1)2(1)2(1) and have unit cell dimensions a=73.70A, b=101.97A, c=108.62A (alpha=beta=gamma=90 degrees ). Molecular replacement with the Thermotoga maritima NifS model was used to determine phasing, and the IscS model was refined to an R=20.6% (R(free)=23.6%) with two molecules per asymmetric unit. The structure of E.coli IscS is similar to that of T.maritima NifS with nearly identical secondary structure and an overall backbone r.m.s. difference of 1.4A. However, in contrast to NifS a peptide segment containing the catalytic cysteine residue (Cys328) is partially ordered in the IscS structure. This segment of IscS (residues 323-335) forms a surface loop directed away from the active site pocket. Cys328 is positioned greater than 17A from the pyridoxal phosphate cofactor, suggesting that a large conformational change must occur during catalysis in order for Cys328 to participate in nucleophilic attack of a pyridoxal phosphate-bound cysteine substrate. Modeling suggests that rotation of this loop may allow movement of Cys328 to within approximately 3A of the pyridoxal phosphate cofactor.  相似文献   

10.
The prpB gene of Salmonella enterica serovar Typhimurium LT2 encodes a protein with 2-methylisocitrate (2-MIC) lyase activity, which cleaves 2-MIC into pyruvate and succinate during the conversion of propionate to pyruvate via the 2-methylcitric acid cycle. This paper reports the isolation and kinetic characterization of wild-type and five mutant PrpB proteins. Wild-type PrpB protein had a molecular mass of approximately 32 kDa per subunit, and the biologically active enzyme was comprised of four subunits. Optimal 2-MIC lyase activity was measured at pH 7.5 and 50 degrees C, and the reaction required Mg(2+) ions; equimolar concentrations of Mn(2+) ions were a poor substitute for Mg(2+) (28% specific activity). Dithiothreitol (DTT) or reduced glutathione (GSH) was required for optimal activity; the role of DTT or GSH was apparently not to reduce disulfide bonds, since the disulfide-specific reducing agent Tris(2-carboxyethyl)phosphine hydrochloride failed to substitute for DTT or GSH. The K(m) of PrpB for 2-MIC was measured at 19 micro M, with a k(cat) of 105 s(-1). Mutations in the prpB gene were introduced by site-directed mutagenesis based on the active-site residues deemed important for catalysis in the closely related phosphoenolpyruvate mutase and isocitrate lyase enzymes. Residues D58, K121, C123, and H125 of PrpB were changed to alanine, and residue R122 was changed to lysine. Nondenaturing polyacrylamide gel electrophoresis indicated that all mutant PrpB proteins retained the same oligomeric state of the wild-type enzyme, which is known to form tetramers. The PrpB(K121A), PrpB(H125A), and PrpB(R122K) mutant proteins formed enzymes that had 1,050-, 750-, and 2-fold decreases in k(cat) for 2-MIC lyase activity, respectively. The PrpB(D58A) and PrpB(C123A) proteins formed tetramers that displayed no detectable 2-MIC lyase activity indicating that both of these residues are essential for catalysis. Based on the proposed mechanism of the closely related isocitrate lyases, PrpB residue C123 is proposed to serve as the active site base, and residue D58 is critical for the coordination of a required Mg(2+) ion.  相似文献   

11.
The crystal structure of the flavoprotein Pad1 from Escherichia coli O157:H7 complexed with the cofactor FMN has been determined by the multiple anomalous diffraction method and refined at 2.0 A resolution. This protein is a paralog of UbiX (3-octaprenyl-4-hydroxybenzoate carboxylyase, 51% sequence identity) that catalyzes the third step in ubiquinone biosynthesis and to Saccharomyces cerevisiae Pad1 (54% identity), an enzyme that confers resistance to the antimicrobial compounds phenylacrylic acids through decarboxylation of these compounds. Each Pad1 monomer consists of a typical Rossmann fold containing a non-covalently bound molecule of FMN. The fold of Pad1 is similar to MrsD, an enzyme associated with lantibiotic synthesis; EpiD, a peptidyl-cysteine decarboxylase; and AtHAL3a, the enzyme, which decarboxylates 4'-phosphopantothenoylcysteine to 4'-phosphopantetheine during coenzyme A biosynthesis, all with a similar location of the FMN binding site at the interface between two monomers, yet each having little sequence similarity to one another. All of these proteins associate into oligomers, with a trimer forming the common structural unit in each case. In MrsD and EpiD, which belong to the homo-dodecameric flavin-containing cysteine decarboxylase (HFCD) family, these trimers associate further into dodecamers. Pad1 also forms dodecamers, although the association of the trimers is completely different, resulting in exposure of a different side of the trimer unit to the solvent. This exposure affects the location of the substrate binding site and, specifically, its access to the FMN cofactor. Therefore, Pad1 forms a separate family, distinguishable from the HFCD family.  相似文献   

12.
Bacterial polynucleotide phosphorylase (PNPase) plays a major role in mRNA turnover by the degradation of RNA from the 3′- to 5′-ends. Here, we determined the crystal structures of the wild-type and a C-terminal KH/S1 domain-truncated mutant (ΔKH/S1) of Escherichia coli PNPase at resolutions of 2.6 Å and 2.8 Å, respectively. The six RNase PH domains of the trimeric PNPase assemble into a ring-like structure containing a central channel. The truncated mutant ΔKH/S1 bound and cleaved RNA less efficiently with an eightfold reduced binding affinity. Thermal melting and acid-induced trimer dissociation studies, analyzed by circular dichroism and dynamic light scattering, further showed that ΔKH/S1 formed a less stable trimer than the full-length PNPase. The crystal structure of ΔKH/S1 is more expanded, containing a slightly wider central channel than that of the wild-type PNPase, suggesting that the KH/S1 domain helps PNPase to assemble into a more compact trimer, and it regulates the channel size allosterically. Moreover, site-directed mutagenesis of several arginine residues in the channel neck regions produced defective PNPases that either bound and cleaved RNA less efficiently or generated longer cleaved oligonucleotide products, indicating that these arginines were involved in RNA binding and processive degradation. Taking these results together, we conclude that the constricted central channel and the basic-charged residues in the channel necks of PNPase play crucial roles in trapping RNA for processive exonucleolytic degradation.  相似文献   

13.
An alginate lyase named ALYII was purified to homogeneity from Escherichia coli JM109 carrying a recombinant plasmid, pJK26 harbouring the alyII gene from Pseudomonas sp. OS-ALG-9 by column chromatography with DEAE-cellulose, CM-Sephadex C-50, butyl-Toyopearl 650 M and isoelectric focusing. The molecular size of the purified ALYII was estimated to be 79 kDa by SDS-PAGE and its pI was 8.3. The enzyme was most active at pH 7.0 and 30 °C. Its activity was completely inhibited by Hg2+. The enzyme was poly -D-1, 4-mannuronate-specific rather than -D-1, 4-guluronate-specific and it showed a promotion effect in alginate degradation by combination with ALY, an another poly -D-1, 4-mannuronate-specific alginate lyase from the same strain.  相似文献   

14.
The chaperone SecB from Escherichia coli is primarily involved in passing precursor proteins into the Sec system via specific interactions with SecA. The crystal structure of SecB from E. coli has been solved to 2.35 A resolution. The structure shows flexibility in the crossover loop and the helix-connecting loop, regions that have been implicated to be part of the SecB substrate-binding site. Moreover conformational variability of Trp36 is observed as well as different loop conformations for the different monomers. Based on this, we speculate that SecB can regulate the access or extent of its hydrophobic substrate-binding site, by modulating the conformation of the crossover loop and the helix-connecting loop. The structure also clearly explains why the tetrameric equilibrium is shifted towards the dimeric state in the mutant SecBCys76Tyr. The buried cysteine residue is crucial for tight packing, and mutations are likely to disrupt the tetramer formation but not the dimer formation.  相似文献   

15.
Shi D  Yu X  Zhao G  Ho J  Lu S  Allewell NM  Tuchman M 《Proteins》2012,80(5):1436-1447
Putrescine carbamoyltransferase (PTCase) catalyzes the conversion of carbamoylputrescine to putrescine and carbamoyl phosphate (CP), a substrate of carbamate kinase (CK). The crystal structure of PTCase has been determined and refined at 3.2 Å resolution. The trimeric molecular structure of PTCase is similar to other carbamoyltransferases, including the catalytic subunit of aspartate carbamoyltransferase (ATCase) and ornithine carbamoyltransferase (OTCase). However, in contrast to other trimeric carbamoyltransferases, PTCase binds both CP and putrescine with Hill coefficients at saturating concentrations of the other substrate of 1.53 ± 0.03 and 1.80 ± 0.06, respectively. PTCase also has a unique structural feature: a long C‐terminal helix that interacts with the adjacent subunit to enhance intersubunit interactions in the molecular trimer. The C‐terminal helix appears to be essential for both formation of the functional trimer and catalytic activity, since truncated PTCase without the C‐terminal helix aggregates and has only 3% of native catalytic activity. The active sites of PTCase and OTCase are similar, with the exception of the 240′s loop. PTCase lacks the proline‐rich sequence found in knotted carbamoyltransferases and is unknotted. A Blast search of all available genomes indicates that 35 bacteria, most of which are Gram‐positive, have an agcB gene encoding PTCase located near the genes that encode agmatine deiminase and CK, consistent with the catabolic role of PTCase in the agmatine degradation pathway. Sequence comparisons indicate that the C‐terminal helix identified in this PTCase structure will be found in all other PTCases identified, suggesting that it is the signature feature of the PTCase family of enzymes Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The FMNH(2)-dependent alkanesulfonate monooxygenase SsuD catalyzes the conversion of alkanesulfonates to the corresponding aldehyde and sulfite. The enzyme allows Escherichia coli to use a wide range of alkanesulfonates as sulfur sources for growth when sulfate or cysteine are not available. The structure of SsuD was solved using the multiwavelength anomalous dispersion method from only four ordered selenium sites per asymmetric unit (one site per 20,800 Da). The final model includes 328 of 380 amino acid residues and was refined to an R-factor of 23.5% (R(free)=27.5%) at 2.3A resolution. The X-ray crystal structure of SsuD shows a homotetrameric state for the enzyme, each subunit being composed of a TIM-barrel fold enlarged by four insertion regions that contribute to intersubunit interactions. SsuD is structurally related to a bacterial luciferase and an archaeal coenzyme F(420)-dependent reductase in spite of a low level of sequence identity with these enzymes. The structural relationship is not limited to the beta-barrel region; it includes most but not all extension regions and shows distinct properties for the SsuD TIM-barrel. A likely substrate-binding site is postulated on the basis of the SsuD structure presented here, results from earlier biochemical studies, and structure relatedness to bacterial luciferase. SsuD is related to other FMNH(2)-dependent monooxygenases that show distant sequence relationship to luciferase. Thus, the structure reported here provides a model for enzymes belonging to this family and suggests that they might all fold as TIM-barrel proteins.  相似文献   

17.
Collagens have long been believed to adopt a triple‐stranded molecular structure with a 10/3 symmetry (ten triplet units in three turns) and an axial repeat of 29 Å. This belief even persisted after an alternative structure with a 7/2 symmetry (seven triplet units in two turns) with an axial repeat of 20 Å had been proposed. The uncertainty regarding the helical symmetry of collagens is attributed to inadequate X‐ray fiber diffraction data. Therefore, for better understanding of the collagen helix, single‐crystal analyses of peptides with simplified characteristic amino acid sequences and similar compositions to collagens have long been awaited. Here we report the crystal structure of (Gly‐Pro‐Hyp)9 peptide at a resolution of 1.45 Å. The repeating unit of this peptide, Gly‐Pro‐Hyp, is the most typical sequence present in collagens, and it has been used as a basic repeating unit in fiber diffraction analyses of collagen. The (Gly‐Pro‐Hyp)9 peptide adopts a triple‐stranded structure with an average helical symmetry close to the ideal 7/2 helical model for collagen. This observation strongly suggests that the average molecular structure of collagen is not the accepted Rich and Crick 10/3 helical model but is a 7/2 helical conformation. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 607–616, 2012.  相似文献   

18.
Tobacco etch virus (TEV) protease is a cysteine protease exhibiting stringent sequence specificity. The enzyme is widely used in biotechnology for the removal of the affinity tags from recombinant fusion proteins. Crystal structures of two TEV protease mutants as complexes with a substrate and a product peptide provided the first insight into the mechanism of substrate specificity of this enzyme. We now report a 2.7A crystal structure of a full-length inactive C151A mutant protein crystallised in the absence of peptide. The structure reveals the C terminus of the protease bound to the active site. In addition, we determined dissociation constants of TEV protease substrate and product peptides using isothermal titration calorimetry for various forms of this enzyme. Data suggest that TEV protease could be inhibited by the peptide product of autolysis. Separate modes of recognition for native substrates and the site of TEV protease self-cleavage are proposed.  相似文献   

19.
Bacillus sp. GL1 xanthan lyase, a member of polysaccharide lyase family 8 (PL-8), acts exolytically on the side-chains of pentasaccharide-repeating polysaccharide xanthan and cleaves the glycosidic bond between glucuronic acid (GlcUA) and pyruvylated mannose (PyrMan) through a beta-elimination reaction. To clarify the enzyme reaction mechanism, i.e. its substrate recognition and catalytic reaction, we determined crystal structures of a mutant enzyme, N194A, in complexes with the product (PyrMan) and a substrate (pentasacharide) and in a ligand-free form at 1.8, 2.1, and 2.3A resolution. Based on the structures of the mutant in complexes with the product and substrate, we found that xanthan lyase recognized the PyrMan residue at subsite -1 and the GlcUA residue at +1 on the xanthan side-chain and underwent little interaction with the main chain of the polysaccharide. The structure of the mutant-substrate complex also showed that the hydroxyl group of Tyr255 was close to both the C-5 atom of the GlcUA residue and the oxygen atom of the glycosidic bond to be cleaved, suggesting that Tyr255 likely acts as a general base that extracts the proton from C-5 of the GlcUA residue and as a general acid that donates the proton to the glycosidic bond. A structural comparison of catalytic centers of PL-8 lyases indicated that the catalytic reaction mechanism is shared by all members of the family PL-8, while the substrate recognition mechanism differs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号