首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ATPase activity of the multiple drug resistance transporter Mdr1 (P-glycoprotein, gp170) depended on the concentration of ATP with both positive and negative co-operativity both in the absence and in the presence of verapamil. Four co-operating binding sites for ATP were required to adequately model the experimental findings. The activation energy for the ATPase activity increased from approximately 385 kJ x mol-1 at 10 microM ATP to 512 kJ x mol-1 at 1600 microM, while changes in verapamil concentration had little effect. This indicates that the reaction mechanism of ATP hydrolysis depends on ATP concentration and is further evidence for co-operation of ATP binding sites. Free ATP in higher concentration was inhibitory; however, this inhibition could be reduced by complexing the ATP with Mg2+. Free Mg2+ had little effect on Mdr1 apart from complexing ATP.  相似文献   

2.
In vitro studies of multidrug-resistant cell lines have shown that a membrane protein, the P-glycoprotein, is responsible for resistance to a wide range of structurally and functionally dissimilar anti-cancer drugs. The amino-acid sequence of P-glycoprotein (Pgp) indicates two consensus sequences for ATP binding and the purified protein has been reported to possess a low level of ATPase activity. As part of our goal to further characterize the ATPase activity of P-glycoprotein, we have developed a procedure for rapid partial purification of the protein in a highly active form. Plasma membrane vesicles from multidrug-resistant CHRC5 Chinese hamster ovary cells were subjected to a two-step procedure involving selective extraction with different concentrations of the zwitterionic detergent CHAPS. The resulting extract was enriched in P-glycoprotein (around 30% pure) and displayed an ATPase activity (specific activity 543 nmol mg-1 min-1) that was not found in a similar preparation from drug-sensitive cells. The ATPase specific activity was over 10-fold higher than that previously reported for immunoprecipitated Pgp and 280-fold higher than that of immunoaffinity-purified Pgp. This ATPase activity could be distinguished from that of other ion-motive ATPases and membrane-associated phosphatases and is, thus, proposed to be directly attributable to P-glycoprotein. Optimal P-glycoprotein ATPase activity required Mg2+ at an ATP: Mg2+ molar ratio of 0.75:1 and the apparent Km for ATP was 0.88 mM. P-Glycoprotein ATPase could be completely inhibited by vanadate and by the sulfhydryl-modifying reagents N-ethylmaleimide, HgCl2 and p-chloromercuribenzenesulfonate. Certain drugs and chemosensitizers, including colchicine, progesterone, nifedipine, verapamil and trifluoperazine, produced up to 50% activation of P-glycoprotein ATPase activity.  相似文献   

3.
Kinetics of inhibition of ATPase activity of pure mouse Mdr3 P-glycoprotein upon incubation with MgADP and vanadate were studied along with the trapping of [14C]ADP in presence of vanadate. The presence of verapamil strongly magnified both effects. Inhibition of ATPase was also increased by several other drugs known to bind to drug-binding sites. Inhibition by ADP-vanadate was slow and depended cooperatively on nucleotide binding. Stoichiometry of [14C]ADP trapping by vanadate was 1 mol/mol P-glycoprotein at full inhibition. Catalytic site mutants prevented [14C]ADP trapping, whereas interdomain signal communication mutants reduced it in approximate correlation with their effects upon drug stimulation of ATPase. In explanation of the results, we propose that a "closed conformation" involving dimerization and interdigitation of the two nucleotide-binding domains is necessary to allow inhibition by ADP-vanadate. The results suggest that such a conformation occurs naturally during ATP hydrolysis. It is proposed that in order for the catalytic transition state to form, the two nucleotide-binding domains dimerize to form an integrated single entity containing two bound ATP with just one of the two ATP being hydrolyzed per dimerization event.  相似文献   

4.
The human multidrug resistance P-glycoprotein (ABCB1) transports a broad range of structurally diverse compounds out of the cell. The transport cycle involves coupling of drug binding in the transmembrane domains with ATP hydrolysis. Compounds such as verapamil stimulate ATPase activity. We used cysteine-scanning mutagenesis of the transmembrane segments and reaction with the thiol-reactive substrate analog of verapamil, methanethiosulfonate (MTS)-verapamil, to test whether it caused permanent activation of ATP hydrolysis. Here we report that one mutant, I306C(TM5) showed increased ATPase activity (8-fold higher than untreated) when treated with MTS-verapamil and isolated by nickel-chelate chromatography. Drug substrates that either enhance (calcein acetoxymethyl ester, demecolcine, and vinblastine) or inhibit (cyclosporin A and trans-(E)-flupentixol) ATPase activity of Cys-less or untreated mutant I306C P-glycoprotein did not affect the activity of MTS-verapamil-treated mutant I306C. Addition of dithiothreitol released the covalently attached verapamil, and ATPase activity returned to basal levels. Pretreatment with substrates such as cyclosporin A, demecolcine, verapamil, vinblastine, or colchicine prevented activation of mutant I306C by MTS-verapamil. The results suggest that MTS-verapamil reacts with I306C in a common drug-binding site. Covalent modification of I306C affects the long range linkage between the drug-binding site and the distal ATP-binding sites. This results in the permanent activation of ATP hydrolysis in the absence of transport. Trapping mutant I306C in a permanently activated state indicates that Ile-306 may be part of the signal to switch on ATP hydrolysis when the drug-binding site is occupied.  相似文献   

5.
Suramin inhibited protein kinase C (PKC) type I-III activity in a concentration-dependent manner. Similar inhibitory effects were observed with M-kinase, the constitutively active catalytic fragment of PKC, and autophosphorylation of PKC types I-III. Kinetic experiments indicated that suramin competitively inhibits activity with respect to ATP (Ki = 17, 27, and 31 microM, respectively) and that it can also inhibit by interaction with the substrate histone III-S. With protamine as the Pi acceptor, suramin inhibition was dependent on lipid, being approximately 4-fold less sensitive to inhibition in the absence of phosphatidylserine and diacylglycerol than in their presence. Suramin at low concentrations (10-40 microM), in the presence of Ca2+ and absence of lipid, was able to stimulate kinase activity (approximately 200-400%) in a type-dependent manner and at higher concentrations inhibited activity with histone III-S as substrate. These results indicate that suramin, a hexa-anionic hydrophobic compound, can act as a negatively charged phospholipid analog in activating PKC in the presence of Ca2+ and absence of lipid and can inhibit Ca2+/phosphatidylserine/diacylglycerol-stimulated kinase activity at higher concentrations by competing with ATP or by interaction with the exogenous substrate. Suramin inhibited cAMP-dependent protein kinase much less potently (IC50 = 656 microM) than PKC. The ability of suramin to inhibit PKC-mediated processes in intact cells was tested using the phorbol ester-stimulated respiratory burst of neutrophils as a model system. The respiratory burst of human neutrophils, when preincubated with suramin and then stimulated with phorbol ester, was inhibited in a concentration-dependent manner, suggesting that suramin may also be able to inhibit PKC-mediated processes in intact cells.  相似文献   

6.
Hua S  Ma H  Lewis D  Inesi G  Toyoshima C 《Biochemistry》2002,41(7):2264-2272
Experimental perturbations of the nucleotide site in the N domain of the SR Ca2+ ATPase were produced by chemical derivatization of Lys492 or/and Lys515, mutation of Arg560 to Ala, or addition of inactive nucleotide analogue (TNP-AMP). Selective labeling of either Lys492 or Lys515 produces strong inhibition of ATPase activity and phosphoenzyme intermediate formation by utilization of ATP, while AcP utilization and reverse ATPase phosphorylation by Pi are much less affected. Cross-linking of the two residues with DIDS, however, drastically inhibits utilization of both ATP and AcP, as well as of formation of phosphoenzyme intermediate by utilization of ATP, or reverse phosphorylation by Pi. Mutation of Arg560 to Ala produces strong inhibition of ATPase activity and enzyme phosphorylation by ATP but has a much lower effect on enzyme phosphorylation by Pi. TNP-AMP increases the ATPase activity at low concentrations (0.1-0.3 microM), but inhibits ATP, AcP, and Pi utilization at higher concentration (1-10 microM). Cross-linking with DIDS and TNP-AMP binding inhibits formation of the transition state analogue with orthovanadate. It is concluded that in addition to the binding pocket delimited by Lys 492 and Lys515, Arg560 sustains an important and direct role in nucleotide substrate stabilization. Furthermore, the effects of DIDS and TNP-AMP suggest that approximation of N (nucleotide) and P (phosphorylation) domains is required not only for delivery of nucleotide substrate, but also to favor enzyme phosphorylation by nucleotide and nonnucleotide substrates, in the presence and in the absence of Ca2+. Domain separation is then enhanced by secondary nucleotide binding to the phosphoenzyme, thereby favoring its hydrolytic cleavage.  相似文献   

7.
Drug–drug interactions (DDIs) and associated toxicity from cardiovascular drugs represents a major problem for effective co-administration of cardiovascular therapeutics. A significant amount of drug toxicity from DDIs occurs because of drug interactions and multiple cardiovascular drug binding to the efflux transporter P-glycoprotein (Pgp), which is particularly problematic for cardiovascular drugs because of their relatively low therapeutic indexes. The calcium channel antagonist, verapamil and the cardiac glycoside, digoxin, exhibit DDIs with Pgp through non-competitive inhibition of digoxin transport, which leads to elevated digoxin plasma concentrations and digoxin toxicity. In the present study, verapamil-induced ATPase activation kinetics were biphasic implying at least two verapamil-binding sites on Pgp, whereas monophasic digoxin activation of Pgp-coupled ATPase kinetics suggested a single digoxin-binding site. Using intrinsic protein fluorescence and the saturation transfer double difference (STDD) NMR techniques to probe drug–Pgp interactions, verapamil was found to have little effect on digoxin–Pgp interactions at low concentrations of verapamil, which is consistent with simultaneous binding of the drugs and non-competitive inhibition. Higher concentrations of verapamil caused significant disruption of digoxin–Pgp interactions that suggested overlapping and competing drug-binding sites. These interactions correlated to drug-induced conformational changes deduced from acrylamide quenching of Pgp tryptophan fluorescence. Also, Pgp-coupled ATPase activity kinetics measured with a range of verapamil and digoxin concentrations fit well to a DDI model encompassing non-competitive and competitive inhibition of digoxin by verapamil. The results and previous transport studies were combined into a comprehensive model of verapamil–digoxin DDIs encompassing drug binding, ATP hydrolysis, transport and conformational changes.  相似文献   

8.
Karwatsky J  Lincoln MC  Georges E 《Biochemistry》2003,42(42):12163-12173
Selection of tumor cell lines with anticancer drugs has led to the appearance of multidrug-resistant (MDR) subclones with P-glycoprotein 1 (P-gp1) expression. These cells are cross-resistant to several structurally and functionally dissimilar drugs. Interestingly, in the process of gaining resistance, MDR cells become hypersensitive or collaterally sensitive to membrane-active agents, such as calcium channel blockers, steroids, and local anaesthetics. In this report, hypersensitivity to the calcium channel blocker, verapamil, was analyzed in sensitive and resistant CHO cell lines. Our results show that treatment with verapamil preferentially induced apoptosis in MDR cells compared to drug-sensitive cells. This effect was independent of p53 activity and could be inhibited by overexpression of the Bcl-2 gene. The induction of apoptosis by verapamil had a biphasic trend in which maximum cell death occurred at 10 microM, followed by improved cell survival at higher concentrations (50 microM). We correlated this effect to a similar biphasic trend in P-gp1 ATPase activation by verapamil in which low concentrations of verapamil (10 microM) activated ATPase, followed by inhibition at higher concentrations. To confirm the relationship between apoptosis and ATPase activity, we used two inhibitors of P-gp1 ATPase, PSC 833 and ivermectin. These ATPase inhibitors reduced hypersensitivity to verapamil in MDR cells. In addition, low concentrations of verapamil resulted in the production of reactive oxygen species (ROS) in MDR cells. Taken together, these results show that apoptosis was preferentially induced by P-gp1 expressing cells exposed to verapamil, an effect that was mediated by ROS, produced in response the high ATP demand by P-gp1.  相似文献   

9.
The maltose transporter FGK2 complex of Escherichia coli was purified with the aid of a glutathione S-transferase molecular tag. In contrast to the membrane-associated form of the complex, which requires liganded maltose binding protein (MBP) for ATPase activity, the purified detergent-soluble complex exhibited a very high level of ATPase activity. This uncoupled activity was not due to dissociation of the MalK ATPase subunit from the integral membrane protein MalF and MalG subunits. The detergent-soluble ATPase activity of the complex could be further stimulated by wild-type MBP but not by a signaling-defective mutant MBP. Wild-type MBP increased the Vmax of the ATPase 2.7-fold but had no effect on the Km of the enzyme for ATP. When the detergent-soluble complex was reconstituted in proteoliposomes, it returned to being dependent on MBP for activation of ATPase, consistent with the idea that the structural changes induced in the complex by detergent that result in activation of the ATPase are reversible. The uncoupled ATPase activity resembled the membrane-bound activity of the complex also with respect to sensitivity to NaN3, as well as a mercurial, p-chloromercuribenzosulfonic acid. Verapamil, a compound that activates the ATPase activity of the multiple drug resistance P-glycoprotein, activated the maltose transporter ATPase as well. The activation of this bacterial transporter by verapamil suggests that a structural feature that is conserved among both eukaryotic and prokaryotic ATP binding cassette transporters is responsible for this activation.  相似文献   

10.
P-glycoprotein (P-gp; ABCB1) actively transports a broad range of structurally unrelated compounds out of the cell. An important step in the transport cycle is coupling of drug binding with ATP hydrolysis. Drug substrates such as verapamil bind in a common drug-binding pocket at the interface between the TM (transmembrane) domains of P-gp and stimulate ATPase activity. In the present study, we used cysteine-scanning mutagenesis and reaction with an MTS (methanethiosulphonate) thiol-reactive analogue of verapamil (MTS-verapamil) to test whether the first TM segment [TM1 (TM segment 1)] forms part of the drug-binding pocket. One mutant, L65C, showed elevated ATPase activity (10.7-fold higher than an untreated control) after removal of unchanged MTS-verapamil. The elevated ATPase activity was due to covalent attachment of MTS-verapamil to Cys65 because treatment with dithiothreitol returned the ATPase activity to basal levels. Verapamil covalently attached to Cys65 appears to occupy the drug-binding pocket because verapamil protected mutant L65C from modification by MTS-verapamil. The ATPase activity of the MTS-verapamil-modified mutant L65C could not be further stimulated with verapamil, calcein acetoxymethyl ester or demecolcine. The ATPase activity could be inhibited by cyclosporin A but not by trans-(E)-flupentixol. These results suggest that TM1 contributes to the drug-binding pocket.  相似文献   

11.
12.
Basal and trypsin-stimulated adenosine triphosphatase activities of Escherichia coli K 12 have been characterized at pH 7.5 in the membrane-bound state and in a soluble form of the enzyme. The saturation curve for Mg2+/ATP = 1/2 was hyperbolic with the membrane-bound enzyme and sigmoidal with the soluble enzyme. Trypsin did not modify the shape of the curves. The kinetic parameters were for the membrane-bound ATPase: apparent Km = 2.5 mM, Vmax (minus trypsin) = 1.6 mumol-min-1-mg protein-1, Vmax (plus trypsin) = 2.44 mumol-min-1-mg protein-1; for the soluble ATPase: [S0.5] = 1.2 mM, Vmax (-trypsin) = 4 mumol-min-1-mg protein-1; Vmax (+ trypsin) = 6.6 mumol-min-1-mg protein-1. Hill plot analysis showed a single slope for the membrane-bound ATPase (n = 0.92) but two slopes were obtained for the soluble enzyme (n = 0.98 and 1.87). It may suggest the existence of an initial positive cooperativity at low substrate concentrations followed by a lack of cooperativity at high ATP concentrations. Excess of free ATP and Mg2+ inhibited the ATPase but excess of Mg/ATP (1/2) did not. Saturation for ATP at constant Mg2+ concentration (4 mM) showed two sites (groups) with different Kms: at low ATP the values were 0.38 and 1.4 mM for the membrane-bound and soluble enzyme; at high ATP concentrations they were 17 and 20 mM, respectively. Mg2+ saturation at constant ATP (8 mM) revealed michealian kinetics for the membrane-bound ATPase and sigmoid one for the protein in soluble state. When the ATPase was assayed in presence of trypsin we obtained higher Km values for Mg2+. These results might suggest that trypsin stimulates E. coli ATPase by acting on some site(s) involved in Mg2+ binding. Adenosine diphosphate and inorganic phosphate (Pi) act as competitive inhibitors of Escherichia coli ATPase. The Ki values for Pi were 1.6 +/- 0.1 mM for the membrane-bound ATPase and 1.3 +/- 0.1 mM for the enzyme in soluble form, the Ki values for ADP being 1.7 mM and 0.75 mM for the membrane-bound and soluble ATPase, respectively. Hill plots of the activity of the soluble enzyme in presence of ADP showed that ADP decreased the interaction coefficient at ATP concentrations below its Km value. Trypsin did not modify the mechanism of inhibition or the inhibition constants. Dicyclohexylcarbodiimide (0.4 mM) inhibited the membrane-bound enzyme by 60-70% but concentrations 100 times higher did not affect the residual activity nor the soluble ATPase. This inhibition was independent of trypsin. Sodium azide (20 muM) inhibited both states of E. coli ATPase by 50%. Concentrations 25-fold higher were required for complete inhibition. Ouabain, atebrin and oligomycin did not affect the bacterial ATPase.  相似文献   

13.
The Escherichia coli uncA gene codes for the alpha-subunit of the F1 sector of the membrane proton ATPase. In this work purified soluble F1 enzymes from three mutant strains ( uncA401 , uncA447 , and uncA453 ) have been compared to F1 from a normal strain in respect to (a) binding of 5'-adenylyl imidodiphosphate (AMPPNP) to native enzyme in both the presence and absence of Mg, (b) high-affinity binding of MgATP to native enzyme, (c) total reloading of MgAMPPNP to nucleotide-depleted F1 preparations, (d, e) ability to hydrolyze MgATP at both high MgATP concentrations (d) (steady-state conditions) and low MgATP concentrations (e) where substrate hydrolysis occurs under nonsteady-state (" unisite ") conditions, and (f) sensitivity of steady-state ATPase activities to inhibitors of normal F1-ATPase activity. uncA mutant F1 showed normal stoichiometry of MgAMPPNP binding to both native (three sites per F1) and nucleotide-depleted preparations (six sites per F1). Native uncA F1 preparations showed lower-than-normal affinity for MgAMPPNP and MgATP at the first site filled. Binding of AMPPNP in the absence of Mg was similar to normal, except that no increase in affinity for AMPPNP was induced by aurovertin. The uncA F1-ATPases had low but real steady-state rates of ATP hydrolysis, which were inhibited by aurovertin but relatively insensitive to inhibition by AMPPNP, efrapeptin, and sodium azide. Non-steady-state ( unisite ) ATP hydrolysis rates catalyzed at low substrate concentrations by uncA F1-ATPases were similar to normal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Isolated spinach CF1 (chloroplast coupling factor 1) forms enzyme-bound ATP without any supply of energy in the presence of high concentrations of Pi [Feldman and Sigman (1982) J Biol Chem 257: 1676-1683]. The final amount of CF1-bound ATP synthesized was increased greatly by 1,2-propanediol, and moderately by methanol, ethanol, and dimethyl sulfoxide, but decreased by glycerol and octyl glucoside. Methanol and ethanol greatly increased the initial rate of ATP synthesis, while 1,2-propanediol increased it only moderately. Low concentrations (10-8 -10-6 M) of tentoxin, which inhibit ATPase activity of isolated CF1, did not affect enzyme-bound ATP synthesis. However, high concentrations (>10-5 M) of tentoxin, which stimulate ATPase activity of isolated CF1, enhanced the initial rate of CF1-bound ATP synthesis without significant effect on the final amount of ATP synthesized in the presence of medium ADP. The substrate of enzyme-bound ATP synthesized came largely from tightly bound ADP, not medium ADP, and tentoxin did not affect this substrate profile. Tentoxin did not affect the binding of medium ADP to high affinity sites on CF1.  相似文献   

15.
Curcumin is a compound derived from the spice, tumeric. It is a potent inhibitor of the SERCA Ca2+ pumps (all isoforms), inhibiting Ca2+-dependent ATPase activity with IC50 values of between 7 and 15 microm. It also inhibits ATP-dependent Ca2+-uptake in a variety of microsomal membranes, although for cerebellar and platelet microsomes, a stimulation in Ca2+ uptake is observed at low curcumin concentrations (<10 microm). For the skeletal muscle isoform of the Ca2+ pump (SERCA1), the inhibition of curcumin is noncompetitive with respect to Ca2+, and competitive with respect to ATP at high curcumin concentrations ( approximately 10-25 microm). This was confirmed by ATP binding studies that showed inhibition in the presence of curcumin: ATP-dependent phosphorylation was also reduced. Experiments with fluorescein 5'-isothiocyanate (FITC)-labelled ATPase also suggest that curcumin stabilizes the E1 conformational state. The fact that FITC labels the nucleotide binding site of the ATPase (precluding ATP from binding), and the fact that curcumin affects FITC fluorescence indicate that curcumin must be binding to another site within the ATPase that induces a conformational change to prevent ATP from binding. This observation is interpreted, with the aid of recent structural information, as curcumin stabilizing the interaction between the nucleotide-binding and phosphorylation domains, precluding ATP binding.  相似文献   

16.
P-glycoprotein (P-gp) is a multidrug transporter responsible for resistance to anticancer chemotherapy and physiologically involved in absorption, distribution, and excretion of a large number of hydrophobic xenobiotics. P-gp exhibits both an ATPase activity correlated with its drug transport function and a basal ATPase activity in the absence of any drug. We have developed a high-throughput screening test to detect specific interactions between drugs and P-gp. We took into account the existence of multiple binding sites on P-gp to propose and validate an optimized strategy, based on the modulation of the basal ATPase activity of P-gp and of the ATPase activity stimulated by three reference substrates (verapamil, vinblastine, and progesterone). The ATPase activity measurements were performed on P-gp-containing membrane vesicles from actinomycin-D-selected hamster DC-3F lung fibroblasts by a spectrophotometric method based on continuous monitoring of ADP formation, regenerated in ATP by a coupled enzyme system. This assay may be performed on 96- or 384-well microtiter plates. When applying this ATPase assay to 41 compounds known from the literature for their interaction with P-gp, 95% of them were found to be positive, whereas only 78% were positive when considering solely the modulation of the basal activity.  相似文献   

17.
Margaret Thom  Ewald Komor 《Planta》1984,161(4):361-365
Kinetic analysis of the Mg2+-dependence of tonoplast ATPase from suspension-cultured cells of sugarcane showed that the enzyme activity increased with increasing magnesium concentrations till 1–3 mM and then decreased consideably for higher concentrations. This kinetic could be explained by the assumption that MgATP2- is the substrate of ATPase: MgATP2- concentration increases with increasing concentration of magnesium till, at high concentrations of magnesium, Mg2ATP is formed. No evidence for a direct role of Mg2+ as activator or inhibitor was found. These data corroborate previous findings that MgATP2- is the sole substrate of the vacuolar ATPase of sugarcane (Thom and Komor 1984). High concentrations of ATP seemed to inhibit the ATPase. This result, however, could be traced back to interference of ATP with the Fiske-Subbarow method of phosphate determination. After adjustment of the test conditions, inhibition by ATP was no longer found. Reported data for ATPases of other plant materials, showing inhibition of enzyme activity with high magnesium or ATP concentrations, might be explicable in a similar way.Abbreviation Mes 2-(N-morpholino)ethane+Sulfonic acid  相似文献   

18.
ATP-sensitive K+ (KATP) channels are unique metabolic sensors formed by association of Kir6.2, an inwardly rectifying K+ channel, and the sulfonylurea receptor SUR, an ATP binding cassette protein. We identified an ATPase activity in immunoprecipitates of cardiac KATP channels and in purified fusion proteins containing nucleotide binding domains NBD1 and NBD2 of the cardiac SUR2A isoform. NBD2 hydrolyzed ATP with a twofold higher rate compared to NBD1. The ATPase required Mg2+ and was insensitive to ouabain, oligomycin, thapsigargin, or levamisole. K1348A and D1469N mutations in NBD2 reduced ATPase activity and produced channels with increased sensitivity to ATP. KATP channel openers, which bind to SUR, promoted ATPase activity in purified sarcolemma. At higher concentrations, openers reduced ATPase activity, possibly through stabilization of MgADP at the channel site. K1348A and D1469N mutations attenuated the effect of openers on KATP channel activity. Opener-induced channel activation was also inhibited by the creatine kinase/creatine phosphate system that removes ADP from the channel complex. Thus, the KATP channel complex functions not only as a K+ conductance, but also as an enzyme regulating nucleotide-dependent channel gating through an intrinsic ATPase activity of the SUR subunit. Modulation of the channel ATPase activity and/or scavenging the product of the ATPase reaction provide novel means to regulate cellular functions associated with KATP channel opening.  相似文献   

19.
P-glycoprotein (Pgp) is a transmembrane protein conferring multidrug resistance to cells by extruding a variety of amphipathic cytotoxic agents using energy from ATP hydrolysis. The objective of this study was to understand how substrates affect the catalytic cycle of ATP hydrolysis by Pgp. The ATPase activity of purified and reconstituted recombinant human Pgp was measured using a continuous cycling assay. Pgp hydrolyzes ATP in the absence of drug at a basal rate of 0.5 micromol x min x mg(-1) with a K(m) for ATP of 0.33 mm. This basal rate can be either increased or decreased depending on the Pgp substrate used, without an effect on the K(m) for ATP or 8-azidoATP and K(i) for ADP, suggesting that substrates do not affect nucleotide binding to Pgp. Although inhibitors of Pgp activity, cyclosporin A, its analog PSC833, and rapamycin decrease the rate of ATP hydrolysis with respect to the basal rate, they do not completely inhibit the activity. Therefore, these drugs can be classified as substrates. Vanadate (Vi)-induced trapping of [alpha-(32)P]8-azidoADP was used to probe the effect of substrates on the transition state of the ATP hydrolysis reaction. The K(m) for [alpha-(32)P]8-azidoATP (20 microm) is decreased in the presence of Vi; however, it is not changed by drugs such as verapamil or cyclosporin A. Strikingly, the extent of Vi-induced [alpha-(32)P]8-azidoADP trapping correlates directly with the fold stimulation of ATPase activity at steady state. Furthermore, P(i) exhibits very low affinity for Pgp (K(i) approximately 30 mm for Vi-induced 8-azidoADP trapping). In aggregate, these data demonstrate that the release of Vi trapped [alpha-(32)P]8-azidoADP from Pgp is the rate-limiting step in the steady-state reaction. We suggest that substrates modulate the rate of ATPase activity of Pgp by controlling the rate of dissociation of ADP following ATP hydrolysis and that ADP release is the rate-limiting step in the normal catalytic cycle of Pgp.  相似文献   

20.
The human multidrug resistance P-glycoprotein (P-gp, ABCB1) transports a wide variety of structurally diverse compounds out of the cell. The drug-binding pocket of P-gp is located in the transmembrane domains. Although occupation of the drug-binding pocket by one molecule is sufficient to activate the ATPase activity of P-gp, the drug-binding pocket may be large enough to accommodate two different substrates at the same time. In this study, we used cysteine-scanning mutagenesis to test whether P-gp could simultaneously interact with the thiol-reactive drug substrate, Tris-(2-maleimidoethyl)amine (TMEA) and a second drug substrate. TMEA is a cross-linker substrate of P-gp that allowed us to test for stimulation of cross-linking by a second substrate such as calcein-acetoxymethyl ester, colchicine, demecolcine, cyclosporin A, rhodamine B, progesterone, and verapamil. We report that verapamil induced TMEA cross-linking of mutant F343C(TM6)/V982C(TM12). By contrast, no cross-linked product was detected in mutants F343C(TM6), V982C(TM12), or F343C(TM6)/V982C(TM12) in the presence of TMEA alone. The verapamil-stimulated ATPase activity of mutant F343C(TM6)/V982C(TM12) in the presence of TMEA decreased with increased cross-linking of the mutant protein. These results show that binding of verapamil must induce changes in the drug-binding pocket (induced-fit mechanism) resulting in exposure of residues F343C(TM6)/V982C(TM12) to TMEA. The results also indicate that the common drug-binding pocket in P-gp is large enough to accommodate both verapamil and TMEA simultaneously and suggests that the substrates must occupy different regions in the common drug-binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号