首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

Background

Barn owls integrate spatial information across frequency channels to localize sounds in space.

Methodology/Principal Findings

We presented barn owls with synchronous sounds that contained different bands of frequencies (3–5 kHz and 7–9 kHz) from different locations in space. When the owls were confronted with the conflicting localization cues from two synchronous sounds of equal level, their orienting responses were dominated by one of the sounds: they oriented toward the location of the low frequency sound when the sources were separated in azimuth; in contrast, they oriented toward the location of the high frequency sound when the sources were separated in elevation. We identified neural correlates of this behavioral effect in the optic tectum (OT, superior colliculus in mammals), which contains a map of auditory space and is involved in generating orienting movements to sounds. We found that low frequency cues dominate the representation of sound azimuth in the OT space map, whereas high frequency cues dominate the representation of sound elevation.

Conclusions/Significance

We argue that the dominance hierarchy of localization cues reflects several factors: 1) the relative amplitude of the sound providing the cue, 2) the resolution with which the auditory system measures the value of a cue, and 3) the spatial ambiguity in interpreting the cue. These same factors may contribute to the relative weighting of sound localization cues in other species, including humans.  相似文献   

2.
The perception and production of biological movements is characterized by the 1/3 power law, a relation linking the curvature and the velocity of an intended action. In particular, motions are perceived and reproduced distorted when their kinematics deviate from this biological law. Whereas most studies dealing with this perceptual-motor relation focused on visual or kinaesthetic modalities in a unimodal context, in this paper we show that auditory dynamics strikingly biases visuomotor processes. Biologically consistent or inconsistent circular visual motions were used in combination with circular or elliptical auditory motions. Auditory motions were synthesized friction sounds mimicking those produced by the friction of the pen on a paper when someone is drawing. Sounds were presented diotically and the auditory motion velocity was evoked through the friction sound timbre variations without any spatial cues. Remarkably, when subjects were asked to reproduce circular visual motion while listening to sounds that evoked elliptical kinematics without seeing their hand, they drew elliptical shapes. Moreover, distortion induced by inconsistent elliptical kinematics in both visual and auditory modalities added up linearly. These results bring to light the substantial role of auditory dynamics in the visuo-motor coupling in a multisensory context.  相似文献   

3.
Summary For echolocation,Rhinolophus ferrumequinum emits orientation sounds, each of which consists of a long constant-frequency (CF) component and short frequency-modulated (FM) components. The CF component is about 83 kHz and is used for Doppler-shift compensation. In this bat, single auditory nerve fibers and cochlear nuclear neurons tuned at about 83 kHz show low threshold and very sharp filter characteristics. The slopes of their tuning curves ranged between 1,000 and 3,500 dB/octave and their Q-10 dB values were between 20 and 400, 140 on the average (Figs. 3–5). The peripheral auditory system is apparently specialized for the reception and fine frequency analysis of the CF component in orientation sounds and Doppler-shift compensated echoes. This specialization is not due to suppression or inhibition comparable to lateral inhibition, but due to the mechanical specialization of the cochlea. Peripheral auditory neurons with the best frequency between 77 and 87 kHz showed not only on-responses, but also off-responses to tonal stimuli (Figs. 1, 2, and 6). The off-responses with a latency comparable to that of N1-off were not due to a rebound from either suppression or inhibition, but probably due to a mechanical transient occurring in the cochlea at the cessation of a tone burst.We thank Alexander von Humboldt Stiftung, Deutsche Forschungsgemeinschaft (Grant No. Ne146/6-8), Stiftung Volkswagenwerk (Grant No. 111858), and American National Science Foundation (Grant No. 40018 and BMS 75-17077) for their support for our cooperative work.  相似文献   

4.
The auditory responsiveness of a number of neurones in the meso- and metathoracic ganglia of the locust, Locusta migratoria, was found to change systematically during concomitant wind stimulation. Changes in responsiveness were of three kinds: a suppression of the response to low frequency sound (5 kHz), but an unchanged or increased response to high frequency (12 kHz) sound; an increased response to all sound; a decrease in the excitatory, and an increase in the inhibitory, components of a response to sound. Suppression of the response to low frequency sound was mediated by wind, rather than by the flight motor. Wind stimulation caused an increase in membrane conductance and concomitant depolarization in recorded neurones. Wind stimulation potentiated the spike response to a given depolarizing current, and the spike response to a high frequency sound, by about the same amount. The strongest wind-related input to interneuron 714 was via the metathoracic N6, which carries the axons of auditory receptors from the ear. The EPSP evoked in central neurones by electrical stimulation of metathoracic N6 was suppressed by wind stimulation, and by low frequency (5 kHz), but not high frequency (10 kHz), sound. This suppression disappeared when N6 was cut distally to the stimulating electrodes. Responses to low frequency (5 kHz), rather than high frequency (12 kHz), sounds could be suppressed by a second low frequency tone with an intensity above 50-55 dB SPL for a 5 kHz suppressing tone. Suppression of the electrically-evoked EPSP in neurone 714 was greatest at those sound frequencies represented maximally in the spectrum of the locust's wingbeat. It is concluded that the acoustic components of a wind stimulus are able to mediate both inhibition and excitation in the auditory pathway. By suppressing the responses to low frequency sounds, wind stimulation would effectively shift the frequency-response characteristics of central auditory neurones during flight.  相似文献   

5.
Ultrasonic calls in the frequency range of 40–80 kHz play an important role in sound communication of house mice. The processing of ultrasounds is enhanced by overrepresentation of the corresponding frequency range in the inferior colliculus and auditory cortex. The latter has an ultrasonic field that is distinct from the tonotopy of the primary auditory cortex and has connections with brain areas of multi-sensory, motivational, and motor control. Mechanisms, such as critical band filtering and categorical perception, ensure that ultrasounds can easily be discriminated from other sounds of the mouse acoustic repertoire.  相似文献   

6.
In a typical auditory scene, sounds from different sources and reflective surfaces summate in the ears, causing spatial cues to fluctuate. Prevailing hypotheses of how spatial locations may be encoded and represented across auditory neurons generally disregard these fluctuations and must therefore invoke additional mechanisms for detecting and representing them. Here, we consider a different hypothesis in which spatial perception corresponds to an intermediate or sub-maximal firing probability across spatially selective neurons within each hemisphere. The precedence or Haas effect presents an ideal opportunity for examining this hypothesis, since the temporal superposition of an acoustical reflection with sounds arriving directly from a source can cause otherwise stable cues to fluctuate. Our findings suggest that subjects’ experiences may simply reflect the spatial cues that momentarily arise under various acoustical conditions and how these cues are represented. We further suggest that auditory objects may acquire “edges” under conditions when interaural time differences are broadly distributed.  相似文献   

7.
Summary Evoked potential (EP) recordings in the auditory cortex of the porpoise,Phocoena phocoena, were used to obtain data characterizing the auditory perception of this dolphin. The frequency threshold curves showed that the lowest EP thresholds were within 120–130 kHz. An additional sensitivity peak was observed between 20 and 30 kHz. The minimal EP threshold to noise burst was 3·10–4–10/s-3 Pa. The threshold for response to modulations in sound intensity was below 0.5 dB and about 0.1% for frequency modulations. Special attention was paid to the dependence of the auditory cortex EP on the temporal parameters of the acoustic stimuli: sound burst duration, rise time, and repetition rate. The data indicate that the porpoise auditory cortex is adapted to detect ultrasonic, brief, fast rising, and closely spaced sounds like echolocating clicks.Abbreviation EP evoked potential  相似文献   

8.
Schaette R  Turtle C  Munro KJ 《PloS one》2012,7(6):e35238
Tinnitus, a phantom auditory sensation, is associated with hearing loss in most cases, but it is unclear if hearing loss causes tinnitus. Phantom auditory sensations can be induced in normal hearing listeners when they experience severe auditory deprivation such as confinement in an anechoic chamber, which can be regarded as somewhat analogous to a profound bilateral hearing loss. As this condition is relatively uncommon among tinnitus patients, induction of phantom sounds by a lesser degree of auditory deprivation could advance our understanding of the mechanisms of tinnitus. In this study, we therefore investigated the reporting of phantom sounds after continuous use of an earplug. 18 healthy volunteers with normal hearing wore a silicone earplug continuously in one ear for 7 days. The attenuation provided by the earplugs simulated a mild high-frequency hearing loss, mean attenuation increased from <10 dB at 0.25 kHz to >30 dB at 3 and 4 kHz. 14 out of 18 participants reported phantom sounds during earplug use. 11 participants presented with stable phantom sounds on day 7 and underwent tinnitus spectrum characterization with the earplug still in place. The spectra showed that the phantom sounds were perceived predominantly as high-pitched, corresponding to the frequency range most affected by the earplug. In all cases, the auditory phantom disappeared when the earplug was removed, indicating a causal relation between auditory deprivation and phantom sounds. This relation matches the predictions of our computational model of tinnitus development, which proposes a possible mechanism by which a stabilization of neuronal activity through homeostatic plasticity in the central auditory system could lead to the development of a neuronal correlate of tinnitus when auditory nerve activity is reduced due to the earplug.  相似文献   

9.
Several anabantoid species produce broad-band sounds with high-pitched dominant frequencies (0.8–2.5 kHz), which contrast with generally low-frequency hearing abilities in (perciform) fishes. Utilizing a recently developed auditory brainstem response recording-technique, auditory sensitivities of the gouramis Trichopsis vittata, T. pumila, Colisa lalia, Macropodus opercularis and Trichogaster trichopterus were investigated and compared with the sound characteristics of the respective species. All five species exhibited enhanced sound-detecting abilities and perceived tone bursts up to 5 kHz, which qualifies this group as hearing specialists. All fishes possessed a high-frequency sensitivity maximum between 800 Hz and 1500 Hz. Lowest hearing thresholds were found in T. trichopterus (76 dB re 1 μPa at 800 Hz). Dominant frequencies of sounds correspond with the best hearing bandwidth in T. vittata (1–2 kHz) and C. lalia (0.8–1 kHz). In the smallest species, T. pumila, dominant frequencies of acoustic signals (1.5–2.5 kHz) do not match lowest thresholds, which were below 1.5 kHz. However, of all species studied, T. pumila had best hearing sensitivity at frequencies above 2 kHz. The association between high-pitched sounds and hearing may be caused by the suprabranchial air-breathing chamber, which, lying close to the hearing and sonic organs, enhances both sound perception and emission at its resonant frequency. Accepted: 26 November 1997  相似文献   

10.
Temporal cues are important for some forms of auditory processing, such as echolocation. Among odontocetes (toothed whales, dolphins, and porpoises), it has been suggested that porpoises may have temporal processing abilities which differ from other odontocetes because of their relatively narrow auditory filters and longer duration echolocation signals. This study examined auditory temporal resolution in two Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) using auditory evoked potentials (AEPs) to measure: (a) rate following responses and modulation rate transfer function for 100 kHz centered pulse sounds and (b) hearing thresholds and response amplitudes generated by individual pulses of different durations. The animals followed pulses well at modulation rates up to 1,250 Hz, after which response amplitudes declined until extinguished beyond 2,500 Hz. The subjects had significantly better hearing thresholds for longer, narrower-band pulses similar to porpoise echolocation signals compared to brief, broadband sounds resembling dolphin clicks. Results indicate that the Yangtze finless porpoise follows individual acoustic signals at rates similar to other odontocetes tested. Relatively good sensitivity for longer duration, narrow-band signals suggests that finless porpoise hearing is well suited to detect their unique echolocation signals.  相似文献   

11.
A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190–210 ms, for 1 kHz stimuli from 170–200 ms, for 2.5 kHz stimuli from 140–200 ms, 5 kHz stimuli from 100–200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300–340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.  相似文献   

12.
Conspecifics during development provide the most reliable sensory cues for species recognition in parental bird species. The Zebra Finch (Taeniopygia guttata) is a sexually dimorphic model species used for investigations of the behavioural cues and neurobiological substrates of species recognition. Regarding acoustic conspecific cues, theory predicts that exposure to both con- and heterospecific vocalisations and other environmental sounds results in more accurate auditory species discrimination, because diverse vocal cues during development shift optimal conspecific acceptance thresholds to be more restrictive to yield fewer acceptance errors. We tested the behavioural preferences of female and male Zebra Finches raised in an outdoor environment (Control) and female and male Zebra Finches reared in an indoor colony with exposure to Zebra Finches only (Restricted), to playbacks of songs of Zebra Finches, Zebra Finches cross-fostered by Bengalese Finches (Lonchura striata var. domestica), and Bengalese Finches. Several behavioural measures revealed minimal sexual dimorphism in discrimination but showed that Control subjects preferred conspecifics’ songs over either the songs of cross-fostered Zebra Finches or Bengalese Finches. Restricted Zebra Finches in contrast did not discriminate behaviourally between the three song types. These results support the concept of a shift in the species acceptance threshold in the restricted treatment resulting in more acceptance errors. We discuss future work to test the role of exposure to diverse vocal cues of both con- and heterospecifics in the ontogeny of song perception in this important laboratory model species for social recognition research.  相似文献   

13.
The superordinate mechanism view of emotions predicts that fear should influence perception to carry out the evolved function of overcoming immediate threats. Previous work demonstrates that fear does adaptively influence visual perception. However, there are recurring situations in which auditory perception is used for overcoming immediate threats (e.g., avoiding predators after dark). Some research suggests that the auditory system, independent of fear, is adaptively biased to hear approaching sounds as closer than equidistant receding sounds (a.k.a. the looming bias). The present study investigated whether fear, as a superordinate mechanism, influences auditory perception such that sounds are perceived to be closer, ultimately providing an advantage when avoiding immediate threats. Participants judged whether or not they could reach to an aurally or visually perceived target while either in a fearful or neutral state. The results demonstrated that while in a fearful state, participants judged targets to be closer to them, but only when the target was perceived aurally. This finding extends previous work on adaptive biases in auditory perception to include the influence of fear.  相似文献   

14.
Highly aroused or scared animals may produce a variety of sounds that sound harsh and are somewhat unpredictable. These sounds frequently contain nonlinear acoustic phenomena, and these nonlinearities may elicit arousal or alarm responses in humans and many animals. We designed a playback experiment to elucidate whether specific nonlinear phenomena can elicit increased responsiveness in great‐tailed grackles (Quiscalus mexicanus). We broadcast two control sounds (a 0.5‐s, 3‐kHz pure tone and the song of tropical kingbirds (Tyrannus melancholicus) and three test sounds that all began with a 0.4‐s, 3‐kHz pure tone and ended with 0.1 s of either a 1‐ to 5‐kHz band of white noise, an abrupt frequency jump to 1 kHz, or an abrupt frequency jump to 5 kHz. In response to these three nonlinear phenomena, grackles decreased their relaxed behavior (walking, foraging, and preening) and increased looking. A second experiment looked at the rapidity of the time course of frequency change and found that the abrupt frequency jump from 3 to 1 kHz, as opposed to a gradual downward frequency modulation over the same bandwidth, was uniquely arousing. These results suggest that while nonlinear phenomena may be generally evocative, frequency jumps may be the most evocative in great‐tailed grackles. Future studies in other systems can evaluate this general hypothesis.  相似文献   

15.
Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4–8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.  相似文献   

16.
Differences in auditory perception between species are influenced by phylogenetic origin and the perceptual challenges imposed by the natural environment, such as detecting prey- or predator-generated sounds and communication signals. Bats are well suited for comparative studies on auditory perception since they predominantly rely on echolocation to perceive the world, while their social calls and most environmental sounds have low frequencies. We tested if hearing sensitivity and stimulus level coding in bats differ between high and low-frequency ranges by measuring auditory brainstem responses (ABRs) of 86 bats belonging to 11 species. In most species, auditory sensitivity was equally good at both high- and low-frequency ranges, while amplitude was more finely coded for higher frequency ranges. Additionally, we conducted a phylogenetic comparative analysis by combining our ABR data with published data on 27 species. Species-specific peaks in hearing sensitivity correlated with peak frequencies of echolocation calls and pup isolation calls, suggesting that changes in hearing sensitivity evolved in response to frequency changes of echolocation and social calls. Overall, our study provides the most comprehensive comparative assessment of bat hearing capacities to date and highlights the evolutionary pressures acting on their sensory perception.  相似文献   

17.
Summary Cochlear microphonic (CM) and evoked neural potentials (N1) were recorded from the cochlear aqueduct of awakePteronotus parnellii. The CM audiograms obtained with continuous sounds had more or less uniform thresholds except for a sharp threshold notch at about 60 kHz (Fig. 1). When brief tone bursts were presented, the envelopes of the CM responses were always similar to the envelopes of the applied signals except when tone bursts having frequencies at or close to the frequency of the tuned sensitivity notch were presented (i.e., 59–63 kHz). The CM rise-decay times for frequencies around 60kHz were much longer than those of the presented signals (Fig. 2). The prolonged decay times are thought to be due to the ringing of the basilar membrane resulting from a mechanical resonance in the cochlea.The evoked neural potential audiograms (N1-on and N1-off responses) differed considerably from the CM audiogram. Of particular importance is the N1-off audiogram which exhibited very sharp tuning in four frequency regions: 31–33 kHz, 60–63 kHz, 71–73 kHz, and 91–92 kHz (Fig. 5). The frequencies evoking the lowest thresholds of the CM and N1-off (in the 60 kHz region) were either identical or differed by only 100–400 Hz.The sharp tuning in the 60 kHz region of both the CM and N1 audiograms could be eliminated by presenting 90–100 dB continuous sounds for one min but only if the signal frequency was equal to the tuned frequency of the CM audiogram (Figs. 8–13). Presenting intense sounds having frequencies above or below the tuned 60kHz region had no effect on the audiogram. The overstimulation procedure had remarkably specific effects on the CM and N1-off audiograms causing the greatest threshold increases at the 60 kHz tuned frequency and progressively smaller threshold changes on the slopes of the tuned notch.Assuming that the sharp changes of the N1-off thresholds reflect some important underlying mechanism, the N1-off audiograms demonstrate multiple specializations in the peripheral auditory system ofPteronotus with the bat possessing at least three and possibly four sharply tuned regions. With regard to mechanism, the tuned notch in the CM audiogram, the curious CM rise-decay times evoked by tone bursts, and the ease with which the 60 kHz sensitivity notch can be eliminated all argue strongly in favor of a mechanical resonance in the cochlea which is responsible for the sharp tuning around 60 kHz. On the other hand, the absence of tuned notches in the 30 kHz and 90 kHz regions of the CM audiogram together with the absence of any discernable ringing of the CM potentials evoked by 30 kHz and 90 kHz tone bursts both argue against a resonance mechanism for the tuning at these harmonically related frequency regions. Finally, the fact that overstimulating the 60 kHz region had no discernable effect on the N1-off tuning at 30 kHz and 90 kHz demonstrates that the mechanism responsible for the tuned regions at 30 kHz and 90 kHz are independent of the resonance feature of the cochlea at 60 kHz.Abbreviations BF best frequency - CF constant frequency - CM cochlear microphonics - CM-aft after-response of the CM - FM frequency modulated - N 1 evoked neural potentials We thank Professor Alvin Novick for the generous support provided during the conduct of these experiments. We also thank Professor Gerhard Neuweiler and Dr. Gerd Schuller for their helpful comments and suggestions. Supported by PHS Grant NB7616 11.  相似文献   

18.
This paper reviews the basic aspects of auditory processing that play a role in the perception of speech. The frequency selectivity of the auditory system, as measured using masking experiments, is described and used to derive the internal representation of the spectrum (the excitation pattern) of speech sounds. The perception of timbre and distinctions in quality between vowels are related to both static and dynamic aspects of the spectra of sounds. The perception of pitch and its role in speech perception are described. Measures of the temporal resolution of the auditory system are described and a model of temporal resolution based on a sliding temporal integrator is outlined. The combined effects of frequency and temporal resolution can be modelled by calculation of the spectro-temporal excitation pattern, which gives good insight into the internal representation of speech sounds. For speech presented in quiet, the resolution of the auditory system in frequency and time usually markedly exceeds the resolution necessary for the identification or discrimination of speech sounds, which partly accounts for the robust nature of speech perception. However, for people with impaired hearing, speech perception is often much less robust.  相似文献   

19.
Selective attention is the mechanism that allows focusing one’s attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.  相似文献   

20.
What did Morganucodon hear?   总被引:1,自引:0,他引:1  
The structure of the middle and inner ear of Morganucodon , one of the oldest known mammals, is reviewed and compared to the structure of the ears of extant mammals, reptiles and birds with known auditory capabilities. Specifically, allometric relationships between ear dimensions (basilar-membrane length, tympanic-membrane area and stapes-footplate area) and specific features of the audiogram are defined in extant ears. These relationships are then used to make several predictions of auditory function in Morganucodon. The results point out that the ear structures of Morganucodon–Art similar in dimensions to ear structures in both extant small mammals–with predominantly high-frequency (10 kHz) auditory capabilities, and reptiles and birds- with better low and middle-frequency hearing (< 5 kHz). Although the allometric analysis cannot by itself determine whether Morganucodon heard more like present-day small mammals, or birds and reptiles, the apparent stiffness of the Morganucodon middle ear is both more consistent with the high-frequency mammalian middle ear and would act to decrease the sensitivity of a bird-reptile middle ear to low-frequency sound. Several likely hearing scenarios for Morganucodon are defined, including a scenario in which these animals had ears like those of modern small mammals that are selectively sensitive to high-frequency sounds, and a second scenario in which the Morganucodon ear was moderately sensitive to sounds of a narrow middle-frequency range (5–7 kHz) and relatively insensitive to sounds of higher or lower frequency. The evidence needed to substantiate either scenario includes some objective measure of the stiffness of the Morganucodon ossicular system, while a key datum needed to distinguish between the two hypotheses includes confirmation of the presence or absence of a cochlear lamina in the Morganucodon inner ear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号